When trying to count rows with similar 'kind' in data frame:
import pandas as pd
items = [('aaa','aaa text 1'), ('aaa','aaa text 2'), ('aaa','aaa text 3'),
('bb', 'bb text 1'), ('bb', 'bb text 2'), ('bb', 'bb text 3'),
('bb', 'bb text 4'),
('cccc','cccc text 1'), ('cccc','cccc text 2'),
('dd', 'dd text 1'),
('e', 'e text 1'),
('fff', 'fff text 1'),
]
df = pd.DataFrame(items, columns=['kind', 'msg'])
df
kind msg
0 aaa aaa text 1
1 aaa aaa text 2
2 aaa aaa text 3
3 bb bb text 1
4 bb bb text 2
5 bb bb text 3
6 bb bb text 4
7 cccc cccc text 1
8 cccc cccc text 2
9 dd dd text 1
10 e e text 1
11 fff fff text 1
This code works:
df = df[['kind']].groupby(['kind'])['kind'] \
.count() \
.reset_index(name='count') \
.sort_values(['count'], ascending=False) \
.head(5)
df
Resulting in:
kind count
0 aaa 1
1 bb 1
2 cccc 1
3 dd 1
4 e 1
Yet, how can one get a data frame with all columns as in original one plus 'count' column? So the result should have columns 'kind', 'msg', 'count' in this order?
Also, how to sort this resulting data frame in descending order of count?