update - in my original answer, I noted an algorithm mentioned in a prior thread for compiler generated code for divide by constant. The assembly code was written to match a document linked to from that prior thread. The compiler generated code involves slightly different sequences depending on the divisor.
In this situation, the divisor is not known until runtime, so a common algorithm is desired. The example in geza's answer shows a common algorithm, which could be inlined in assembly code with GCC, but Visual Studio doesn't support inline assembly in 64 bit mode. In the case of Visual Studio, there's a trade off between the extra code involved if using intrinsics, versus calling a function written in assembly. On my system (Intel 3770k 3.5ghz) I tried calling a single function that does |mul add adc shr|, and I also tried using a pointer to function to optionally use shorter sequences |mul shr| or |shr(1) mul shr| depending on the divisor, but this provided little or no gain, depending on the compiler. The main overhead in this case is the call (versus |mul add adc shr| ). Even with the call overhead, the sequence|call mul add adc shr ret| averaged about 4 times as fast as divide on my system.
Note that the linked to source code for libdivide in geza's answer does not have a common routine that can handle a divisor == 1. The libdivide common sequence is multiply, subtract, shift(1), add, shift, versus geza's example c++ sequence of multiply, add, adc, shift.
My original answer: the example code below uses the algorithm described in a prior thread.
Why does GCC use multiplication by a strange number in implementing integer division?
This is a link to the document mentioned in the other thread:
http://gmplib.org/~tege/divcnst-pldi94.pdf
The example code below is based on the pdf document and is meant for Visual Studio, using ml64 (64 bit assembler), running on Windows (64 bit OS). The code with labels main... and dcm... is the code to generate a preshift (rspre, number of trailing zero bits in divisor), multiplier, and postshift (rspost). The code with labels dct... is the code to test the method.
includelib msvcrtd
includelib oldnames
sw equ 8 ;size of word
.data
arrd dq 1 ;array of test divisors
dq 2
dq 3
dq 4
dq 5
dq 7
dq 256
dq 3*256
dq 7*256
dq 67116375
dq 07fffffffffffffffh ;max divisor
dq 0
.data?
.code
PUBLIC main
main PROC
push rbp
push rdi
push rsi
sub rsp,64 ;allocate stack space
mov rbp,rsp
lea rsi,arrd ;set ptr to array of divisors
mov [rbp+6*sw],rsi
jmp main1
main0: mov [rbp+0*sw],rbx ;[rbp+0*sw] = rbx = divisor = d
cmp rbx,1 ;if d <= 1, q=n or overflow
jbe main1
bsf rcx,rbx ;rcx = rspre
mov [rbp+1*sw],rcx ;[rbp+1*sw] = rspre
shr rbx,cl ;rbx = d>>rsc
bsr rcx,rbx ;rcx = floor(log2(rbx))
mov rsi,1 ;rsi = 2^floor(log2(rbx))
shl rsi,cl
cmp rsi,rbx ;br if power of 2
je dcm03
inc rcx ;rcx = ceil(log2(rcx)) = L = rspost
shl rsi,1 ;rsi = 2^L
; jz main1 ;d > 08000000000000000h, use compare
add rcx,[rbp+1*sw] ;rcx = L+rspre
cmp rcx,8*sw ;if d > 08000000000000000h, use compare
jae main1
mov rax,1 ;[rbp+3*sw] = 2^(L+rspre)
shl rax,cl
mov [rbp+3*sw],rax
sub rcx,[rbp+1*sw] ;rcx = L
xor rdx,rdx
mov rax,rsi ;hi N bits of 2^(N+L)
div rbx ;rax == 1
xor rax,rax ;lo N bits of 2^(N+L)
div rbx
mov rdi,rax ;rdi = mlo % 2^N
xor rdx,rdx
mov rax,rsi ;hi N bits of 2^(N+L) + 2^(L+rspre)
div rbx ;rax == 1
mov rax,[rbp+3*sw] ;lo N bits of 2^(N+L) + 2^(L+rspre)
div rbx ;rax = mhi % 2^N
mov rdx,rdi ;rdx = mlo % 2^N
mov rbx,8*sw ;rbx = e = # bits in word
dcm00: mov rsi,rdx ;rsi = mlo/2
shr rsi,1
mov rdi,rax ;rdi = mhi/2
shr rdi,1
cmp rsi,rdi ;break if mlo >= mhi
jae short dcm01
mov rdx,rsi ;rdx = mlo/2
mov rax,rdi ;rax = mhi/2
dec rbx ;e -= 1
loop dcm00 ;loop if --shpost != 0
dcm01: mov [rbp+2*sw],rcx ;[rbp+2*sw] = shpost
cmp rbx,8*sw ;br if N+1 bit multiplier
je short dcm02
xor rdx,rdx
mov rdi,1 ;rax = m = mhi + 2^e
mov rcx,rbx
shl rdi,cl
or rax,rdi
jmp short dct00
dcm02: mov rdx,1 ;rdx = 2^N
dec qword ptr [rbp+2*sw] ;dec rspost
jmp short dct00
dcm03: mov rcx,[rbp+1*sw] ;rcx = rsc
jmp short dct10
; test rbx = n, rdx = m bit N, rax = m%(2^N)
; [rbp+1*sw] = rspre, [rbp+2*sw] = rspost
dct00: mov rdi,rdx ;rdi:rsi = m
mov rsi,rax
mov rbx,0fffffffff0000000h ;[rbp+5*sw] = rbx = n
dct01: mov [rbp+5*sw],rbx
mov rdx,rdi ;rdx:rax = m
mov rax,rsi
mov rcx,[rbp+1*sw] ;rbx = n>>rspre
shr rbx,cl
or rdx,rdx ;br if 65 bit m
jnz short dct02
mul rbx ;rdx = (n*m)>>N
jmp short dct03
dct02: mul rbx
sub rbx,rdx
shr rbx,1
add rdx,rbx
dct03: mov rcx,[rbp+2*sw] ;rcx = rspost
shr rdx,cl ;rdx = q = quotient
mov [rbp+4*sw],rdx ;[rbp+4*sw] = q
xor rdx,rdx ;rdx:rax = n
mov rax,[rbp+5*sw]
mov rbx,[rbp+0*sw] ;rbx = d
div rbx ;rax = n/d
mov rdx,[rbp+4*sw] ;br if ok
cmp rax,rdx ;br if ok
je short dct04
nop ;debug check
dct04: mov rbx,[rbp+5*sw]
inc rbx
jnz short dct01
jmp short main1
; test rbx = n, rcx = rsc
dct10: mov rbx,0fffffffff0000000h ;rbx = n
dct11: mov rsi,rbx ;rsi = n
shr rsi,cl ;rsi = n>>rsc
xor edx,edx
mov rax,rbx
mov rdi,[rbp+0*sw] ;rdi = d
div rdi
cmp rax,rsi ;br if ok
je short dct12
nop
dct12: inc rbx
jnz short dct11
main1: mov rsi,[rbp+6*sw] ;rsi ptr to divisor
mov rbx,[rsi] ;rbx = divisor = d
add rsi,1*sw ;advance ptr
mov [rbp+6*sw],rsi
or rbx,rbx
jnz main0 ;br if not end table
add rsp,64 ;restore regs
pop rsi
pop rdi
pop rbp
xor rax,rax
ret 0
main ENDP
END