The title is bit confusing but I'll do my best to explain my problem here. I have 2 pandas dataframes, a and b:
>> print a
id | value
1 | 250
2 | 150
3 | 350
4 | 550
5 | 450
>> print b
low | high | class
100 | 200 | 'A'
200 | 300 | 'B'
300 | 500 | 'A'
500 | 600 | 'C'
I want to create a new column called class in table a that contains the class of the value in accordance with table b. Here's the result I want:
>> print a
id | value | class
1 | 250 | 'B'
2 | 150 | 'A'
3 | 350 | 'A'
4 | 550 | 'C'
5 | 450 | 'A'
I have the following code written that sort of does what I want:
a['class'] = pd.Series()
for i in range(len(a)):
val = a['value'][i]
cl = (b['class'][ (b['low'] <= val) \
(b['high'] >= val) ].iat[0])
a['class'].set_value(i,cl)
Problem is, this is quick for tables length of 10 or so, but I am trying to do this with a table size of 100,000+ for both a and b. Is there a quicker way to do this, using some function/attribute in pandas?