Examine boost or std variant if there is a finite list of supported types.
If not a finite list, boost or std any (or a variant containing an any).
You can find other implementations as well. The std versions are in C++17.
A simplified version of variant could probably be written in a 100 or two lines of code.
Here is a crude C++14 variant:
constexpr std::size_t max() { return 0; }
template<class...Ts>
constexpr std::size_t max( std::size_t t0, Ts...ts ) {
return (t0<max(ts...))?max(ts...):t0;
}
template<class T0, class...Ts>
struct index_of_in;
template<class T0, class...Ts>
struct index_of_in<T0, T0, Ts...>:std::integral_constant<std::size_t, 0> {};
template<class T0, class T1, class...Ts>
struct index_of_in<T0, T1, Ts...>:
std::integral_constant<std::size_t,
index_of_in<T0, Ts...>::value+1
>
{};
struct variant_vtable {
void(*dtor)(void*) = 0;
void(*copy)(void*, void const*) = 0;
void(*move)(void*, void*) = 0;
};
template<class T>
void populate_vtable( variant_vtable* vtable ) {
vtable->dtor = [](void* ptr){ static_cast<T*>(ptr)->~T(); };
vtable->copy = [](void* dest, void const* src){
::new(dest) T(*static_cast<T const*>(src));
};
vtable->move = [](void* dest, void* src){
::new(dest) T(std::move(*static_cast<T*>(src)));
};
}
template<class T>
variant_vtable make_vtable() {
variant_vtable r;
populate_vtable<T>(&r);
return r;
}
template<class T>
variant_vtable const* get_vtable() {
static const variant_vtable table = make_vtable<T>();
return &table;
}
template<class T0, class...Ts>
struct my_variant {
std::size_t index = -1;
variant_vtable const* vtable = 0;
static constexpr auto data_size = max(sizeof(T0),sizeof(Ts)...);
static constexpr auto data_align = max(alignof(T0),alignof(Ts)...);
template<class T>
static constexpr std::size_t index_of() {
return index_of_in<T, T0, Ts...>::value;
}
typename std::aligned_storage< data_size, data_align >::type data;
template<class T>
T* get() {
if (index_of<T>() == index)
return static_cast<T*>((void*)&data);
else
return nullptr;
}
template<class T>
T const* get() const {
return const_cast<my_variant*>(this)->get<T>();
}
template<class F, class R>
using applicator = R(*)(F&&, my_variant*);
template<class T, class F, class R>
static applicator<F, R> get_applicator() {
return [](F&& f, my_variant* ptr)->R {
return std::forward<F>(f)( *ptr->get<T>() );
};
}
template<class F, class R=typename std::result_of<F(T0&)>::type>
R visit( F&& f ) & {
if (index == (std::size_t)-1) throw std::invalid_argument("variant");
static const applicator<F, R> table[] = {
get_applicator<T0, F, R>(),
get_applicator<Ts, F, R>()...
};
return table[index]( std::forward<F>(f), this );
}
template<class F,
class R=typename std::result_of<F(T0 const&)>::type
>
R visit( F&& f ) const& {
return const_cast<my_variant*>(this)->visit(
[&f](auto const& v)->R
{
return std::forward<F>(f)(v);
}
);
}
template<class F,
class R=typename std::result_of<F(T0&&)>::type
>
R visit( F&& f ) && {
return visit( [&f](auto& v)->R {
return std::forward<F>(f)(std::move(v));
} );
}
explicit operator bool() const { return vtable; }
template<class T, class...Args>
void emplace( Args&&...args ) {
clear();
::new( (void*)&data ) T(std::forward<Args>(args)...);
index = index_of<T>();
vtable = get_vtable<T>();
}
void clear() {
if (!vtable) return;
vtable->dtor( &data );
index = -1;
vtable = nullptr;
}
~my_variant() { clear(); }
my_variant() {}
void copy_from( my_variant const& o ) {
if (this == &o) return;
clear();
if (!o.vtable) return;
o.vtable->copy( &data, &o.data );
vtable = o.vtable;
index = o.index;
}
void move_from( my_variant&& o ) {
if (this == &o) return;
clear();
if (!o.vtable) return;
o.vtable->move( &data, &o.data );
vtable = o.vtable;
index = o.index;
}
my_variant( my_variant const& o ) {
copy_from(o);
}
my_variant( my_variant && o ) {
move_from(std::move(o));
}
my_variant& operator=(my_variant const& o) {
copy_from(o);
return *this;
}
my_variant& operator=(my_variant&& o) {
move_from(std::move(o));
return *this;
}
template<class T,
typename std::enable_if<!std::is_same<typename std::decay<T>::type, my_variant>{}, int>::type =0
>
my_variant( T&& t ) {
emplace<typename std::decay<T>::type>(std::forward<T>(t));
}
};
Live example.
Converting to C++11 will consist of a bunch of replacing lambdas with helpers. I don't like writing in C++11, and this C++14 is a mostly mechanical transformations away from it.
It is crude, in that visit
takes exactly one variant and returns void, among other reasons.
Code is almost completely untested, but the design is sound.