EDIT: Now looking on how to calculate # of "looping paths" per node
As the title says, I'm trying to make a function that calculates the number of "signal paths" for any node in a network. A signal path for a node is a path from one of multiple inputs to one of multiple outputs that the node is a part of. I'm using an algorithm someone already made called all_simple_paths, which is a generator which returns every path from an input to an output.
However, even though my code looks right, I'm getting incorrect results. Here's the function:
def signal_path_counter(G, inputs, outputs, node):
c = 0
paths = []
for out in outputs:
for i in inputs:
for path in all_simple_paths(G, i, out):
paths.append(path)
for path in paths:
for n in path:
if(node == n):
c += 1
return c
Here's the input data:
import networkx as nx
import matplotlib.pyplot as plt
G=nx.DiGraph()
molecules = ["CD40L", "CD40", "NF-kB", "XBP1", "Pax5", "Bach2", "Irf4", "IL-4", "IL-4R", "STAT6", "AID", "Blimp1", "Bcl6", "ERK", "BCR", "STAT3", "Ag", "STAT5", "IL-21R", "IL-21", "IL-2", "IL-2R"]
Bcl6 = [("Bcl6", "Bcl6"), ("Bcl6", "Blimp1"), ("Bcl6", "Irf4")]
STAT5 = [("STAT5", "Bcl6")]
IL_2R = [("IL-2R", "STAT5")]
IL_2 = [("IL-22", "IL-2R")]
BCR = [("BCR", "ERK")]
Ag = [("Ag", "BCR")]
CD40L = [("CD40L", "CD40")]
CD40 = [("CD40", "NF-B")]
NF_B = [("NF-B", "Irf4"), ("NF-B", "AID")]
Irf4 = [("Irf4", "Bcl6"), ("Irf4", "Pax5"), ("Irf4", "Irf4"), ("Irf4", "Blimp1")]
ERK = [("ERK", "Bcl6"), ("ERK", "Blimp1"), ("ERK", "Pax5")]
STAT3 = [("STAT3", "Blimp1")]
IL_21 = [("IL-21", "IL-21R")]
IL_21R = [("IL-21R", "STAT3")]
IL_4R = [("IL-4R", "STAT6")]
STAT6 = [("STAT6", "AID"), ("STAT6", "Bcl6")]
Bach2 = [("Bach2", "Blimp1")]
IL_4 = [("IL-4", "IL-4R")]
Blimp1 = [("Blimp1", "Bcl6"), ("Blimp1", "Bach2"), ("Blimp1", "Pax5"), ("Blimp1", "AID"), ("Blimp1", "Irf4")]
Pax5 = [("Pax5", "Pax5"), ("Pax5", "AID"), ("Pax5", "Bcl6"), ("Pax5", "Bach2"), ("Pax5", "XBP1"), ("Pax5", "ERK"), ("Pax5", "Blimp1")]
edges = Bcl6 + STAT5 + IL_2R + IL_2 + BCR + Ag + CD40L + CD40 + NF_B + Irf4 +
ERK + STAT3 + IL_21 + IL_21R + IL_4R + STAT6 + Bach2 + IL_4 + Blimp1 + Pax5
G.add_nodes_from(molecules)
G.add_edges_from(edges)
sources = ["Ag", "CD40L", "IL-2", "IL-21", "IL-4"]
targets = ["XBP1", "AID"]
Visual representation of the input network here.
The function call that gives incorrect result of 0:
print(signal_path_counter(G, sources, targets, "IL-2R"))