I've written a simple implementation of Conway's Game of Life using the Store comonad (see code below). My problem is that the grid generation is getting visibly slower from the fifth iteration onwards. Is my issue related to the fact that I'm using the Store comonad? Or am I making a glaring mistake? As far as I could tell, other implementations, which are based on the Zipper comonad, are efficient.
import Control.Comonad
data Store s a = Store (s -> a) s
instance Functor (Store s) where
fmap f (Store g s) = Store (f . g) s
instance Comonad (Store s) where
extract (Store f a) = f a
duplicate (Store f s) = Store (Store f) s
type Pos = (Int, Int)
seed :: Store Pos Bool
seed = Store g (0, 0)
where
g ( 0, 1) = True
g ( 1, 0) = True
g (-1, -1) = True
g (-1, 0) = True
g (-1, 1) = True
g _ = False
neighbours8 :: [Pos]
neighbours8 = [(x, y) | x <- [-1..1], y <- [-1..1], (x, y) /= (0, 0)]
move :: Store Pos a -> Pos -> Store Pos a
move (Store f (x, y)) (dx, dy) = Store f (x + dx, y + dy)
count :: [Bool] -> Int
count = length . filter id
getNrAliveNeighs :: Store Pos Bool -> Int
getNrAliveNeighs s = count $ fmap (extract . move s) neighbours8
rule :: Store Pos Bool -> Bool
rule s = let n = getNrAliveNeighs s
in case (extract s) of
True -> 2 <= n && n <= 3
False -> n == 3
blockToStr :: [[Bool]] -> String
blockToStr = unlines . fmap (fmap f)
where
f True = '*'
f False = '.'
getBlock :: Int -> Store Pos a -> [[a]]
getBlock n store@(Store _ (x, y)) =
[[extract (move store (dx, dy)) | dy <- yrange] | dx <- xrange]
where
yrange = [(x - n)..(y + n)]
xrange = reverse yrange
example :: IO ()
example = putStrLn
$ unlines
$ take 7
$ fmap (blockToStr . getBlock 5)
$ iterate (extend rule) seed