I am writing a mobile app (Android) that will allow the user to 'write' to a canvas using a single-touch device with 1 pixel accuracy. The app will be running on a tablet device that will be approximately standard 8 1/2" x 11" size. My strategy is to store the 'text' as vector data, in that each stroke of the input device will essentially be a vector consisting of a start point, and end point, and some number of intermediate points that help to define the shape of the vector (generated by the touchscreen/OS on touch movement). This should allow me to keep track of the order that the strokes were put down (to support undo, etc) and be flexible enough to allow this text to be re-sized, etc like any other vector graphic.
However, doing some very rough back of the envelope calculations, with a highly accurate input device and a large screen such that you can emulate on a one for one basis the standard paper notepad, that means you will have ~1,700 strokes per full page of text. Figuring, worst-case, that each stroke could be composed of up to ~20-30 individual points (a point for every pixel or so of the stroke), that means ~50,000 data points per page... WAY too big for SQLite/Android to handle with any expectation of reliability when a page is being reloaded and the vector strokes are being recreated (I have to imagine that pulling 50,000+ results from the SQLite db will exceed the CursorWindow limit of 1Mb)
I know I could break up the data retrieval into multiple queries, or could modify the stroke data such that I only add an intermediate point to help define the stroke vector shape if it is more than X pixels from a start, finish or other intermediate pixel, but I am wondering if I need to rethink this strategy from the ground up...
Any suggestions on how to tackle this problem in a more efficient way?
Thanks!
Paul