I am reading the book Programming in Haskell by Graham Hutton and I have some problem to understand how <*>
and partial application can be used to parse a string.
I know that pure (+1) <*> Just 2
produces Just 3
because pure (+1)
produces Just (+1)
and then Just (+1) <*> Just 2
produces Just (2+1)
and then Just 3
But in more complex case like this:
-- Define a new type containing a parser function
newtype Parser a = P (String -> [(a,String)])
-- This function apply the parser p on inp
parse :: Parser a -> String -> [(a,String)]
parse (P p) inp = p inp
-- A parser which return a tuple with the first char and the remaining string
item :: Parser Char
item = P (\inp -> case inp of
[] -> []
(x:xs) -> [(x,xs)])
-- A parser is a functor
instance Functor Parser where
fmap g p = P (\inp -> case parse p inp of
[] -> []
[(v, out)] -> [(g v, out)])
-- A parser is also an applicative functor
instance Applicative Parser where
pure v = P (\inp -> [(v, inp)])
pg <*> px = P (\inp -> case parse pg inp of
[] -> []
[(g, out)] -> parse (fmap g px) out)
So, when I do:
parse (pure (\x y -> (x,y)) <*> item <*> item) "abc"
The answer is:
[(('a','b'),"c")]
But I don't understand what exactly happens. First:
pure (\x y -> (x,y)) => P (\inp1 -> [(\x y -> (x,y), inp1)])
I have now a parser with one parameter.
Then:
P (\inp1 -> [(\x y -> (x,y), inp1)]) <*> item
=> P (\inp2 -> case parse (\inp1 -> [(\x y -> (x,y), inp1)]) inp2 of ???
I really don't understand what happens here. Can someone explain, step by step, what's happens now until the end please.