Spark dataframe 1 -:
+------+-------+---------+----+---+-------+
|city |product|date |sale|exp|wastage|
+------+-------+---------+----+---+-------+
|city 1|prod 1 |9/29/2017|358 |975|193 |
|city 1|prod 2 |8/25/2017|50 |687|201 |
|city 1|prod 3 |9/9/2017 |236 |431|169 |
|city 2|prod 1 |9/28/2017|358 |975|193 |
|city 2|prod 2 |8/24/2017|50 |687|201 |
|city 3|prod 3 |9/8/2017 |236 |431|169 |
+------+-------+---------+----+---+-------+
Spark dataframe 2 -:
+------+-------+---------+----+---+-------+
|city |product|date |sale|exp|wastage|
+------+-------+---------+----+---+-------+
|city 1|prod 1 |9/29/2017|358 |975|193 |
|city 1|prod 2 |8/25/2017|50 |687|201 |
|city 1|prod 3 |9/9/2017 |230 |430|160 |
|city 1|prod 4 |9/27/2017|350 |90 |190 |
|city 2|prod 2 |8/24/2017|50 |687|201 |
|city 3|prod 3 |9/8/2017 |236 |431|169 |
|city 3|prod 4 |9/18/2017|230 |431|169 |
+------+-------+---------+----+---+-------+
Please find out spark dataframe for following conditions applied on above given spark dataframe 1 and spark dataframe 2,
- Deleted Records
- New Records
- Records with no changes
Records with changes
Here key of comprision are 'city', 'product', 'date'.
we need solution without using Spark SQL.