Was just wondering if anyone knows how to work with data after its been split. Heres what I have now.
combined_cost_freq_2_inp <- run_sql("m5c_comb_out_name.sql", cond_str)
checker <- subset(combined_cost_freq_2_inp, is.na(combined_cost_freq_2_inp$inp_allowed))
holders <- split(combined_cost_freq_2_inp, list(combined_cost_freq_1$cd1,combined_cost_freq_1$cd2))
if( is.na(checker$inp_allowed) == TRUE )
{
sub1 <- subset(holders, !is.na(inp_allowed) & svc_code_category == "Facility - Inpatient")
sub2 <- subset(holders, is.na(inp_allowed)& svc_code_category == "Facility - Inpatient")
sum_freq_0 <- sum(sub2$svcc_pos_freq)
sum_freq_div <- sum_freq_0 / length(sub1$svcc_pos_freq)
sum_freq_added <- (sub1$svcc_pos_freq + sum_freq_div)
if( sum_freq_added > 1)
{
sub1$svcc_pos_freq <- 1
}
else
{
sub1$svcc_pos_freq <- sum_freq_added
}
holder <- rbind(sub1, sub2)
combined_cost_freq_2_inp <- holder
The code below the split worked perfectly before the split but now that I realize I need to split on unique values this has definitely made things a lot more complicated than I would like so any help would be much appreciated!
Sample data: Note: dput(head (holders, 5)) was just to big to post
Browse[2]> str(holders)
List of 1
$ Surgical Treatment.Laparoscopic Gallbladder Removal (Cholecystectomy):'data.frame': 1392 obs. of 26 variables:
..$ state : chr [1:1392] "MO" "MO" "MO" "MO" ...
..$ hrrcity : chr [1:1392] "Cape Girardeau" "Cape Girardeau" "Cape Girardeau" "Cape Girardeau" ...
..$ mcp_category : chr [1:1392] "Digestive Conditions" "Digestive Conditions" "Digestive Conditions" "Digestive Conditions" ...
..$ diagnosis_group : chr [1:1392] "Gallstones" "Gallstones" "Gallstones" "Gallstones" ...
..$ cd1 : chr [1:1392] "Surgical Treatment" "Surgical Treatment" "Surgical Treatment" "Surgical Treatment" ...
..$ cd2 : chr [1:1392] "Laparoscopic Gallbladder Removal (Cholecystectomy)" "Laparoscopic Gallbladder Removal (Cholecystectomy)" "Laparoscopic Gallbladder Removal (Cholecystectomy)" "Laparoscopic Gallbladder Removal (Cholecystectomy)" ...
..$ cd3 : chr [1:1392] "Inpatient Hospital" "Inpatient Hospital" "Inpatient Hospital" "Inpatient Hospital" ...
..$ timeline_ind : chr [1:1392] "Evaluation" "Evaluation" "Evaluation" "Evaluation" ...
..$ svc_lvl_code : chr [1:1392] "" "Consultation and Management" "Consultation and Management" "Consultation and Management" ...
..$ svc_code_category: chr [1:1392] "74174" "Initial hospital care, per day (70 minutes)" "Initial observation care visit, high complexity" "Office visit, 40 minutes" ...
..$ svcc_pos : chr [1:1392] "" "" "" "" ...
..$ claim_type : chr [1:1392] "" "" "" "" ...
..$ ep_count : int [1:1392] 14 14 14 14 14 14 14 14 14 14 ...
..$ svcc_freq : num [1:1392] 0.0714 0.0714 0.0714 0.2857 0.0714 ...
..$ svcc_pos_freq : num [1:1392] 0.0714 0.0714 0.0714 0.2857 0 ...
..$ avg_services : num [1:1392] 1 1 1 2 1 1 1 1 1 1 ...
..$ pos_indicator : chr [1:1392] NA "" "" "" ...
..$ average_billed : num [1:1392] NA 389 440 266 651 ...
..$ average_allowed : num [1:1392] NA 215.8 196.2 151.7 51.6 ...
..$ rep_code : chr [1:1392] NA NA NA NA ...
..$ rx_brand_name : chr [1:1392] NA NA NA NA ...
..$ rx_generic_name : chr [1:1392] NA NA NA NA ...
..$ rx_avg_cost : num [1:1392] NA NA NA NA NA NA NA NA NA NA ...
..$ drg_id : chr [1:1392] NA NA NA NA ...
..$ inp_billed : num [1:1392] NA NA NA NA NA NA NA NA NA NA ...
..$ inp_allowed : num [1:1392] NA NA NA NA NA NA NA NA NA NA ...