i have a dataframe with a large number of rows and column, that contains differents calculus of efforts and measures of 30 people doing 6 differents activities.
I would like calculate the mean of each variable for each people and each activity and summarize it in a table...
My solution in my mind is to make two loops and to proceed it, but there is not an other solution, faster, to proceed it... I discovered the packages, dplyr, tidyr, plyr and reshape2 recently, and i think i can use it to find the solution, but i don't find...
Can you help me ?
subject id_activity activity tBodyAcc-mean()-X tBodyAcc-mean()-Y tBodyAcc-mean()-Z tGravityAcc-mean()-X tGravityAcc-mean()-Y tGravityAcc-mean()-Z tBodyAccJerk-mean()-X tBodyAccJerk-mean()-Y tBodyAccJerk-mean()-Z
1 1 1 WALKING 0.2885845 -0.020294171 -0.13290514 0.9633961 -0.1408397 0.11537494 0.07799634 0.005000803 -0.0678308080
2 1 1 WALKING 0.2784188 -0.016410568 -0.12352019 0.9665611 -0.1415513 0.10937881 0.07400671 0.005771104 0.0293766330
3 1 1 WALKING 0.2796531 -0.019467156 -0.11346169 0.9668781 -0.1420098 0.10188392 0.07363596 0.003104037 -0.0090456308
4 1 1 WALKING 0.2791739 -0.026200646 -0.12328257 0.9676152 -0.1439765 0.09985014 0.07732061 0.020057642 -0.0098647722
5 1 1 WALKING 0.2766288 -0.016569655 -0.11536185 0.9682244 -0.1487502 0.09448590 0.07344436 0.019121574 0.0167799790
6 1 1 WALKING 0.2771988 -0.010097850 -0.10513725 0.9679482 -0.1482100 0.09190972 0.07793244 0.018684046 0.0093444336
7 1 1 WALKING 0.2794539 -0.019640776 -0.11002215 0.9679295 -0.1442821 0.09314463 0.08217077 -0.017014670 -0.0157981660
8 1 1 WALKING 0.2774325 -0.030488303 -0.12536043 0.9684915 -0.1467054 0.09170816 0.07236423 0.008747856 -0.0044681354
9 1 1 WALKING 0.2772934 -0.021750698 -0.12075082 0.9684812 -0.1543740 0.08511826 0.07528437 0.030762704 0.0112119500
10 1 1 WALKING 0.2805857 -0.009960298 -0.10606516 0.9684180 -0.1563020 0.08087447 0.07636932 0.012518906 0.0030843751
11 1 1 WALKING 0.2768803 -0.012721805 -0.10343832 0.9692027 -0.1523614 0.08125808 0.07139686 0.016842441 0.0010303821
12 1 1 WALKING 0.2762282 -0.021441302 -0.10820234 0.9692533 -0.1500638 0.08293121 0.07608451 -0.002311558 -0.0076736296
13 1 1 WALKING 0.2784570 -0.020414761 -0.11273172 0.9689963 -0.1523621 0.08315080 0.07710200 0.017027167 -0.0009852394
14 1 1 WALKING 0.2771750 -0.014712802 -0.10675647 0.9690440 -0.1541413 0.08181960 0.07761238 0.019489223 0.0152076830
15 1 1 WALKING 0.2979457 0.027093908 -0.06166812 0.9448949 -0.2926233 -0.02143552 0.06665616 -0.068367084 -0.0336076010
there are 10 299 rows and 56 columns, i didn't put you all column, just a subset to see how it seems like... Sorry for my english ^^