Control.Alternative.Free
's Alt f
produces a left-distributive Alternative
for free, even if f
isn't Alternative
or f
is a non-left-distributive Alternative
. We can say that, in addition to the well-agreed upon alternative laws
empty <|> x = x
x <|> empty = x
(x <|> y) <|> z = x <|> (y <|> z)
empty <*> f = empty
Alt f
also gives left-distribution for free.
(a <|> b) <*> c = (a <*> c) <|> (b <*> c)
Because Alt f
is always left distributive (and runAlt . liftAlt = id
) liftAlt
can never be a homomorphism for non-left-distributive Alternative
s. If an Alternative f
is not left-distributive, then there exist a
, b
, and c
such that
(a <|> b) <*> c != (a <*> c) <|> (b <*> c)
If liftAlt : f -> Alt f
were a homomorphism then
(a <|> b) <*> c != (a <*> c) <|> (b <*> c) -- f is not left-distributive
id ((a <|> b) <*> c) != id ((a <*> c) <|> (b <*> c))
runAlt . liftAlt ((a <|> b) <*> c) != runAlt . liftAlt ((a <*> c) <|> (b <*> c)) -- runAlt . liftAlt = id
runAlt ((liftAlt a <|> liftAlt b) <*> liftAlt c) != runAlt ((liftAlt a <*> liftAlt c) <|> (liftAlt b <*> liftAlt c)) -- homomorphism
runAlt ((liftAlt a <|> liftAlt b) <*> liftAlt c) != runAlt ((liftAlt a <|> liftAlt b) <*> liftAlt c) -- by left-distribution of `Alt`, this is a contradiction
To demonstrate this we need an Alternative
that isn't left-distributive. Here's one, FlipAp []
.
newtype FlipAp f a = FlipAp {unFlipAp :: f a}
deriving Show
instance Functor f => Functor (FlipAp f) where
fmap f (FlipAp x) = FlipAp (fmap f x)
instance Applicative f => Applicative (FlipAp f) where
pure = FlipAp . pure
(FlipAp f) <*> (FlipAp xs) = FlipAp ((flip ($) <$> xs) <*> f)
instance Alternative f => Alternative (FlipAp f) where
empty = FlipAp empty
(FlipAp a) <|> (FlipAp b) = FlipAp (a <|> b)
Along with some laws for left distribution and right distribution, and some examples
leftDist :: Alternative f => f (x -> y) -> f (x -> y) -> f x -> Example (f y)
leftDist a b c = [(a <|> b) <*> c, (a <*> c) <|> (b <*> c)]
rightDist :: Alternative f => f (x -> y) -> f x -> f x -> Example (f y)
rightDist a b c = [a <*> (b <|> c), (a <*> b) <|> (a <*> c)]
type Example a = [a]
ldExample1 :: Alternative f => Example (f Int)
ldExample1 = leftDist (pure (+1)) (pure (*10)) (pure 2 <|> pure 3)
rdExample1 :: Alternative f => Example (f Int)
rdExample1 = rightDist (pure (+1) <|> pure (*10)) (pure 2) (pure 3)
We can demonstrate a few properties of lists, FlipAp
lists, and runAlt
.
Lists are left-distributive, but FlipAp
lists aren't
ldExample1 :: Example [Int]
ldExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,4,20,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,4,20,30]}]
Lists aren't right-distributive, but FlipAp
lists are
rdExample1 :: Example [Int]
rdExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,20,4,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,20,4,30]}]
Alt
is always left-distributive
map (runAlt id) ldExample1 :: Example [Int]
map (runAlt id) ldExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,4,20,30]]
[FlipAp {unFlipAp = [3,4,20,30]},FlipAp {unFlipAp = [3,4,20,30]}]
Alt
is never right-distributive
map (runAlt id) rdExample1 :: Example [Int]
map (runAlt id) rdExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,20,4,30]]
[FlipAp {unFlipAp = [3,4,20,30]},FlipAp {unFlipAp = [3,20,4,30]}]
We can defile a right-distributive free alternative in terms of FlipAp
and Alt
.
runFlipAlt :: forall f g a. Alternative g => (forall x. f x -> g x) -> FlipAp (Alt f) a -> g a
runFlipAlt nt = runAlt nt . unFlipAp
FlipAp
Alt
is never left-distributive.
map (runFlipAlt id) ldExample1 :: Example [Int]
map (runFlipAlt id) ldExample1 :: Example (FlipAp [] Int)
[[3,20,4,30],[3,4,20,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,4,20,30]}]
FlipAp
Alt
is always right-distributive
map (runFlipAlt id) rdExample1 :: Example [Int]
map (runFlipAlt id) rdExample1 :: Example (FlipAp [] Int)
[[3,20,4,30],[3,20,4,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,20,4,30]}]
Up until now I haven't told you anything that you didn't already imply by saying that liftAlt : f -> Alt f
is an Alternative
homomorphism, but only for left-distributive Alternative instances. But I have shown you a free-alternative that isn't left-distributive (it's trivially right-distributive instead).
A structurally valid free Alternative
This section answers the bulk of your question, is there a structurally valid free Alternative
that isn't left-distributive? Yes.
This isn't an efficient implementation; it's purpose is to demonstrate that it exists and that some version of it can be arrived at in a straight-forward manner.
To make a structurally valid free Alternative
I am doing two things. The first is to create a data structure that can't represent any of the Alternative
laws; if it can't represent the law then a structure can't be constructed independently of the type class to violate it. This is the same trick used to make lists structurally obey the Alternative
associativity law; there's no list that can represent the left-associated (x <|> y) <|> z
. The second part is to make sure the operations obey the laws. A list can't represent the left association law, but an implementation of <|>
could still violate it, like x <|> y = x ++ reverse y
.
The following structure can't be constructed to represent any of the Alternative
laws.
{-# Language GADTs #-}
{-# Language DataKinds #-}
{-# Language KindSignatures #-}
data Alt :: (* -> *) -> * -> * where
Alt :: Alt' empty pure plus f a -> Alt f a
-- empty pure plus
data Alt' :: Bool -> Bool -> Bool -> (* -> *) -> * -> * where
Empty :: Alt' True False False f a
Pure :: a -> Alt' False True False f a
Lift :: f a -> Alt' False False False f a
Plus :: Alt' False pure1 False f a -> Alt' False pure2 plus2 f a -> Alt' False False True f a
-- Empty can't be to the left or right of Plus
-- empty <|> x = x
-- x <|> empty = x
-- Plus can't be to the left of Plus
-- (x <|> y) <|> z = x <|> (y <|> z)
Ap :: Alt' False False plus1 f (a -> b) -> Alt' empty False plus2 f a -> Alt' False False False f b
-- Empty can't be to the left of `Ap`
-- empty <*> f = empty
-- Pure can't be to the left or right of `Ap`
-- pure id <*> v = v
-- pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
-- pure f <*> pure x = pure (f x)
-- u <*> pure y = pure ($ y) <*> u
It's a Functor
instance Functor f => Functor (Alt' empty pure plus f) where
fmap _ Empty = Empty
fmap f (Pure a) = Pure (f a)
fmap f (Plus a as) = Plus (fmap f a) (fmap f as)
fmap f (Lift a) = Lift (fmap f a)
fmap f (Ap g a) = Ap (fmap (f .) g) a
instance Functor f => Functor (Alt f) where
fmap f (Alt a) = Alt (fmap f a)
And it's Applicative
. Because the structure can't represent the laws, when we encounter a term containing one of the unpreventable expressions we're forced to convert it into something else. The laws tell us what to do.
instance Functor f => Applicative (Alt f) where
pure a = Alt (Pure a)
Alt Empty <*> _ = Alt Empty -- empty <*> f = empty
Alt (Pure f) <*> (Alt x) = Alt (fmap f x) -- pure f <*> x = fmap f x (free theorem)
Alt u <*> (Alt (Pure y)) = Alt (fmap ($ y) u) -- u <*> pure y = pure ($ y) <*> u
Alt f@(Lift _) <*> Alt x@Empty = Alt (Ap f x)
Alt f@(Lift _) <*> Alt x@(Lift _) = Alt (Ap f x)
Alt f@(Lift _) <*> Alt x@(Plus _ _) = Alt (Ap f x)
Alt f@(Lift _) <*> Alt x@(Ap _ _) = Alt (Ap f x)
Alt f@(Plus _ _) <*> Alt x@Empty = Alt (Ap f x)
Alt f@(Plus _ _) <*> Alt x@(Lift _) = Alt (Ap f x)
Alt f@(Plus _ _) <*> Alt x@(Plus _ _) = Alt (Ap f x)
Alt f@(Plus _ _) <*> Alt x@(Ap _ _) = Alt (Ap f x)
Alt f@(Ap _ _) <*> Alt x@Empty = Alt (Ap f x)
Alt f@(Ap _ _) <*> Alt x@(Lift _) = Alt (Ap f x)
Alt f@(Ap _ _) <*> Alt x@(Plus _ _) = Alt (Ap f x)
Alt f@(Ap _ _) <*> Alt x@(Ap _ _) = Alt (Ap f x)
All of those Ap
s could be covered by a pair of view patterns, but it doesn't make it any simpler.
It's also an Alternative
. For this we'll use a view pattern to divide the cases into the empty and non-empty cases, and an extra type to store the proof that they're non-empty
{-# Language ViewPatterns #-}
import Control.Applicative
data AltEmpty :: (* -> *) -> * -> * where
Empty_ :: Alt' True False False f a -> AltEmpty f a
NonEmpty_ :: AltNE f a -> AltEmpty f a
data AltNE :: (* -> *) -> * -> * where
AltNE :: Alt' False pure plus f a -> AltNE f a
empty_ :: Alt' e1 p1 p2 f a -> AltEmpty f a
empty_ x@Empty = Empty_ x
empty_ x@(Pure _) = NonEmpty_ (AltNE x)
empty_ x@(Lift _) = NonEmpty_ (AltNE x)
empty_ x@(Plus _ _) = NonEmpty_ (AltNE x)
empty_ x@(Ap _ _) = NonEmpty_ (AltNE x)
instance Functor f => Alternative (Alt f) where
empty = Alt Empty
Alt Empty <|> x = x -- empty <|> x = x
x <|> Alt Empty = x -- x <|> empty = x
Alt (empty_ -> NonEmpty_ a) <|> Alt (empty_ -> NonEmpty_ b) = case a <> b of AltNE c -> Alt c
where
(<>) :: AltNE f a -> AltNE f a -> AltNE f a
AltNE (Plus x y) <> AltNE z = AltNE x <> (AltNE y <> AltNE z) -- (x <|> y) <|> x = x <|> (y <|> z)
AltNE a@(Pure _) <> AltNE b = AltNE (Plus a b)
AltNE a@(Lift _) <> AltNE b = AltNE (Plus a b)
AltNE a@(Ap _ _) <> AltNE b = AltNE (Plus a b)
liftAlt
and runAlt
{-# Language RankNTypes #-}
{-# Language ScopedTypeVariables #-}
liftAlt :: f a -> Alt f a
liftAlt = Alt . Lift
runAlt' :: forall f g x empty pure plus a. Alternative g => (forall x. f x -> g x) -> Alt' empty pure plus f a -> g a
runAlt' u = go
where
go :: forall empty pure plus a. Alt' empty pure plus f a -> g a
go Empty = empty
go (Pure a) = pure a
go (Lift a) = u a
go (Plus x y) = go x <|> go y
go (Ap f x) = go f <*> go x
runAlt :: Alternative g => (forall x. f x -> g x) -> Alt f a -> g a
runAlt u (Alt x) = runAlt' u x
This new Alt f
doesn't provide either left-distribution or right-distribution for free, and therefore runAlt id :: Alt f a -> g a
preserves how distributive g
is.
Lists are still left-distributive, but FlipAp
lists aren't.
map (runAlt id) ldExample1 :: Example [Int]
map (runAlt id) ldExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,4,20,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,4,20,30]}]
List's aren't right-distributive, but FlipAp
lists still are
map (runAlt id) rdExample1 :: Example [Int]
map (runAlt id) rdExample1 :: Example (FlipAp [] Int)
[[3,4,20,30],[3,20,4,30]]
[FlipAp {unFlipAp = [3,20,4,30]},FlipAp {unFlipAp = [3,20,4,30]}]
Source code for this section
Structurally valid left-catch free Alternative
To control which laws we want we can add them to the structurally free alternative we made earlier.
To add left-catch we'll modify the structure so it can't represent it. Left catch is
(pure a) <|> x = pure a
To keep Alt'
from representing it we'll exclude pure
from what's allowed to the left of Plus
.
-- empty pure plus
data Alt' :: Bool -> Bool -> Bool -> (* -> *) -> * -> * where
Empty :: Alt' True False False f a
Pure :: a -> Alt' False True False f a
Lift :: f a -> Alt' False False False f a
Plus :: Alt' False False False f a -> Alt' False pure2 plus2 f a -> Alt' False False True f a
-- Empty can't be to the left or right of Plus
-- empty <|> x = x
-- x <|> empty = x
-- Plus can't be to the left of Plus
-- (x <|> y) <|> z = x <|> (y <|> z)
-- Pure can't be to the left of Plus
-- (pure a) <|> x = pure a
...
This results in a compiler error in the implementation of Alternative Alt
Couldn't match type ‘'True’ with ‘'False’
Expected type: Alt' 'False 'False 'False f a1
Actual type: Alt' 'False pure2 plus2 f a1
In the first argument of ‘Plus’, namely ‘a’
In the first argument of ‘AltNE’, namely ‘(Plus a b)
Which we can fix by appealing to our new law, (pure a) <|> x = pure a
instance Functor f => Alternative (Alt f) where
empty = Alt Empty
Alt Empty <|> x = x -- empty <|> x = x
x <|> Alt Empty = x -- x <|> empty = x
Alt (empty_ -> NonEmpty_ a) <|> Alt (empty_ -> NonEmpty_ b) = case a <> b of AltNE c -> Alt c
where
(<>) :: AltNE f a -> AltNE f a -> AltNE f a
AltNE a@(Pure _) <> _ = AltNE a -- (pure a) <|> x = pure a
AltNE (Plus x y) <> AltNE z = AltNE x <> (AltNE y <> AltNE z) -- (x <|> y) <|> x = x <|> (y <|> z)
AltNE a@(Lift _) <> AltNE b = AltNE (Plus a b)
AltNE a@(Ap _ _) <> AltNE b = AltNE (Plus a b)