I am trying to create a SAT solver which converts from Conjunctive Normal Form (CNF) with an implementation of Boolean Grobner Bases:
a) Negation of a particular variable, e.g. -x
will be converted to 1+x
.
b) Adding the same variable will results in 0. e.g. x + x = 0
. (will need to use XOR).
c) Multiplication of the same variable will result in the same variable. e.g. x*x = x
.
At the moment, I am still trying to figure out how to start, as the input must be in text file, like those they have in SAT competition, where it is as follows :
p cnf 3 4
1 3 -2 0
3 1 0
-1 2 0
2 3 1 0
Thanks.
EDIT
parser :-
open(File, read, Stream),
read_literals(Stream,Literals),
close(Stream),
read_clauses(Literals,[],Clauses),
write(Clauses).
read_literals(Stream,Literals) :-
get_char(Stream,C),
read_literals(C,Stream,Literals).
read_literals(end_of_file,_Stream,Literals) :-
!,
Literals = [].
read_literals(' ',Stream,Literals) :-
!,
read_literals(Stream,Literals).
read_line_then_literals('\n',Stream,Literals) :-
!,
read_literals(Stream,Literals).
read_line_then_literals(_C,Stream,Literals) :-
read_line_then_literals(Stream,Literals).
read_literal_then_literals(Stream,As,Literals) :-
get_char(Stream,C),
read_literal_then_literals(C,Stream,As,Literals).
read_literal_then_literals(C,Stream,As,Literals) :-
digit(C),
!,
name(C,[A]),
read_literal_then_literals(Stream,[A|As],Literals).
read_literal_then_literals(C,Stream,As,Literals) :-
reverse(As,RevAs),
name(Literal,RevAs),
Literals = [Literal|Rest_Literals],
read_literals(C,Stream,Rest_Literals).
digit('0').
digit('1').
digit('2').
digit('3').
digit('4').
digit('5').
digit('6').
digit('7').
digit('8').
digit('9').
read_clauses([],[],[]).
read_clauses([0|Literals],Clause,Clauses) :-
!,
reverse(Clause,RevClause),
Clauses=[RevClause|RestClauses],
read_clauses(Literals,[],RestClauses).
read_clauses([Literal|Literals],Clause,Clauses) :-
read_clauses(Literals,[Literal|Clause],Clauses).