Here's one vectorized approach with np.tensordot
which should be better than broadcasting + summation
anyday -
# Take care of "np.dot(x[i],w)" term
x_w = np.tensordot(x,w,axes=((2),(0)))
# Perform "np.dot(w.T,np.dot(x[i],w))" : "np.dot(w.T,x_w)"
y_out = np.tensordot(x_w,w,axes=((1),(0))).swapaxes(1,2)
Alternatively, all of the mess being taken care of with one np.einsum
call, but could be slower -
y_out = np.einsum('ab,cae,eg->cbg',w,x,w)
Runtime test -
In [114]: def tensordot_app(x, w):
...: x_w = np.tensordot(x,w,axes=((2),(0)))
...: return np.tensordot(x_w,w,axes=((1),(0))).swapaxes(1,2)
...:
...: def einsum_app(x, w):
...: return np.einsum('ab,cae,eg->cbg',w,x,w)
...:
In [115]: x = np.random.rand(30,50,50)
...: w = np.random.rand(50,50)
...:
In [116]: %timeit tensordot_app(x, w)
1000 loops, best of 3: 477 µs per loop
In [117]: %timeit einsum_app(x, w)
1 loop, best of 3: 219 ms per loop
Giving the broadcasting a chance
The sum-notation was -
y[m,i,j] = sum( w[k,i] * x[m,k,l] * w[l,j], axes=[k,l] )
Thus, the three terms would be stacked for broadcasting, like so -
w : [ N x k x i x N x N]
x : [ m x k x N x l x N]
w : [ N x N X N x l x j]
, where N
represents new-axis being appended to facilitate broadcasting
along those dims.
The terms with new axes being added with None/np.newaxis
would then look like this -
w : w[None, :, :, None, None]
x : x[:, :, None, :, None]
w : w[None, None, None, :, :]
Thus, the broadcasted product would be -
p = w[None,:,:,None,None]*x[:,:,None,:,None]*w[None,None,None,:,:]
Finally, the output would be sum-reduction to lose (k,l)
, i.e. axes =(1,3)
-
y = p.sum((1,3))