Given a set of integers 1,2, and 3, find the number of ways that these can add up to n. (The order matters, i.e. say n is 5. 1+2+1+1 and 2+1+1+1 are two distinct solutions)
My solution involves splitting n into a list of 1s so if n = 5, A = [1,1,1,1,1]. And I will generate more sublists recursively from each list by adding adjacent numbers. So A will generate 4 more lists: [2,1,1,1], [1,2,1,1], [1,1,2,1],[1,1,1,2], and each of these lists will generate further sublists until it reaches a terminating case like [3,2] or [2,3]
Here is my proposed solution (in Python)
ways = []
def check_terminating(A,n):
# check for terminating case
for i in range(len(A)-1):
if A[i] + A[i+1] <= 3:
return False # means still can compute
return True
def count_ways(n,A=[]):
if A in ways:
# check if alr computed if yes then don't compute
return True
if A not in ways: # check for duplicates
ways.append(A) # global ways
if check_terminating(A,n):
return True # end of the tree
for i in range(len(A)-1):
# for each index i,
# combine with the next element and form a new list
total = A[i] + A[i+1]
print(total)
if total <= 3:
# form new list and compute
newA = A[:i] + [total] + A[i+2:]
count_ways(A,newA)
# recursive call
# main
n = 5
A = [1 for _ in range(n)]
count_ways(5,A)
print("No. of ways for n = {} is {}".format(n,len(ways)))
May I know if I'm on the right track, and if so, is there any way to make this code more efficient?
Please note that this is not a coin change problem. In coin change, order of occurrence is not important. In my problem, 1+2+1+1 is different from 1+1+1+2 but in coin change, both are same. Please don't post coin change solutions for this answer.
Edit: My code is working but I would like to know if there are better solutions. Thank you for all your help :)