I'm working with a set of co-ordinates, and want to dynamically (I have many sets that need to go through this process) understand how many distinct groups there are within the data. My approach was to apply k-means to investigate whether it would find the centroids and I could go from there.
When plotting some data with 6 distinct clusters (visually) the k-means algorithm continues to ignore two significant clusters while putting many centroids into another.
See image below:
Red are the co-ordinate data points and blue are centroids that k-means has provided. In this specific case I've gone for 15 (arbitrary), but it still doesn't recognise those patches of data on the right hand side, rather putting a mid point between them while putting in 8 in the cluster in the top right.
Admittedly there are slightly more data points in the top right, but not by much.
I'm using the standard k-means algorithm in R and just feeding in x and y co-ordinates. I've tried standardising the data, but this doesn't make any difference.
Any thoughts on why this is, or other potential methodologies that could be applied to try and dynamically understand the number of distinct clusters there are in the data?