We are trying to use the BigMemory library with foreach to parallel our analysis. However, the as.big.matrix function seems always use backingfile. Our workstations have enough memory, is there a way to use bigMemory without the backing file?
This code x.big.desc <-describe(as.big.matrix(x))
is pretty slow as it write the data to C:\ProgramData\boost_interprocess\
. Somehow it is slower than save x directly, is it as.big.matrix that have a slower I/O?
This code x.big.desc <-describe(as.big.matrix(x, backingfile = ""))
is pretty fast, however, it will also save a copy of the data to %TMP% directory. We think the reason it is fast, because R kick off a background writing process, instead of actually writing the data. (We can see the writing thread in TaskManager after the R prompt returns).
Is there a way to use BigMemory with RAM only, so that each worker in foreach loop can access the data via RAM?
Thanks for the help.