In the process of trying to solve another question, I've hit a roadblock. Here's my data:
col1 col2 col3 col4 col5 user_ID
0 [1] [3] [] NaN NaN 1
1 [2, 3] [3] [1, 2, 3] NaN NaN 2
2 [3] [3, 1] [3, 1] NaN NaN 3
0 [1, 2] NaN [1] [3] NaN 1
1 [3] NaN [2, 3] [3] NaN 2
2 [3] NaN [3] [3, 1] NaN 3
0 [1] [3] NaN NaN [] 1
1 [2, 3] [3] NaN NaN [1, 2, 3] 2
2 [3] [3, 1] NaN NaN [3, 1] 3
I want to replace those NaNs with an empty list so I can perform a summation along those columns.
I've tried df.replace
, but I get
TypeError: Invalid "to_replace" type: 'float'
I also tried df.fillna
and got
TypeError: "value" parameter must be a scalar or dict, but you passed a "list"
How can I fill these NaNs with the empty list []
?
Edit: So it turns out this is a duplicate! Since the marked dupe doesn't have an applymap
solution, I'll keep this here.