If you have Pandas, pyperclip or something else to read from the clipboard you could use something like this:
from pandas.io.clipboard import clipboard_get
# import pyperclip
import numpy as np
import re
import ast
def numpy_from_clipboard():
inp = clipboard_get()
# inp = pyperclip.paste()
inp = inp.strip()
# if it starts with "array(" we just need to remove the
# leading "array(" and remove the optional ", dtype=xxx)"
if inp.startswith('array('):
inp = re.sub(r'^array\(', '', inp)
dtype = re.search(r', dtype=(\w+)\)$', inp)
if dtype:
return np.array(ast.literal_eval(inp[:dtype.start()]), dtype=dtype.group(1))
else:
return np.array(ast.literal_eval(inp[:-1]))
else:
# In case it's the string representation it's a bit harder.
# We need to remove all spaces between closing and opening brackets
inp = re.sub(r'\]\s+\[', '],[', inp)
# We need to remove all whitespaces following an opening bracket
inp = re.sub(r'\[\s+', '[', inp)
# and all leading whitespaces before closing brackets
inp = re.sub(r'\s+\]', ']', inp)
# replace all remaining whitespaces with ","
inp = re.sub(r'\s+', ',', inp)
return np.array(ast.literal_eval(inp))
And then read what you saved in the clipboard:
>>> numpy_from_clipboard()
array([[ 0, 1, 2, 3, 4, 5, 6, 7],
[ 8, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23],
[24, 25, 26, 27, 28, 29, 30, 31],
[32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47],
[48, 49, 50, 51, 52, 53, 54, 55],
[56, 57, 58, 59, 60, 61, 62, 63]])
This should be able to parse (most) arrays (str
as well as repr
of arrays) from your clipboard. It should even work for multi-line arrays (where np.loadtxt
fails):
[[ 0.34866207 0.38494993 0.7053722 0.64586156 0.27607369 0.34850162
0.20530567 0.46583039 0.52982216 0.92062115]
[ 0.06973858 0.13249867 0.52419149 0.94707951 0.868956 0.72904737
0.51666421 0.95239542 0.98487436 0.40597835]
[ 0.66246734 0.85333546 0.072423 0.76936201 0.40067016 0.83163118
0.45404714 0.0151064 0.14140024 0.12029861]
[ 0.2189936 0.36662076 0.90078913 0.39249484 0.82844509 0.63609079
0.18102383 0.05339892 0.3243505 0.64685352]
[ 0.803504 0.57531309 0.0372428 0.8308381 0.89134864 0.39525473
0.84138386 0.32848746 0.76247531 0.99299639]]
>>> numpy_from_clipboard()
array([[ 0.34866207, 0.38494993, 0.7053722 , 0.64586156, 0.27607369,
0.34850162, 0.20530567, 0.46583039, 0.52982216, 0.92062115],
[ 0.06973858, 0.13249867, 0.52419149, 0.94707951, 0.868956 ,
0.72904737, 0.51666421, 0.95239542, 0.98487436, 0.40597835],
[ 0.66246734, 0.85333546, 0.072423 , 0.76936201, 0.40067016,
0.83163118, 0.45404714, 0.0151064 , 0.14140024, 0.12029861],
[ 0.2189936 , 0.36662076, 0.90078913, 0.39249484, 0.82844509,
0.63609079, 0.18102383, 0.05339892, 0.3243505 , 0.64685352],
[ 0.803504 , 0.57531309, 0.0372428 , 0.8308381 , 0.89134864,
0.39525473, 0.84138386, 0.32848746, 0.76247531, 0.99299639]])
However I'm not too good with regexes so this probably isn't foolproof and using ast.literal_eval
feels a bit awkard (but it avoids doing the parsing yourself).
Feel free to suggest improvements.