That's really more of an Eigen question: how to expand a sparse matrix?
What you did in your solution is doing everything element-by-element, and it is likely that a dedicated blockwise operation can beat it. Which is what we see with the Matrix
solution, going to efficient code, presumably from CHOLMD.
I had a quick look at the Eigen documentation. And it warns:
Regarding read-access, sparse matrices expose the same API than for dense matrices to access to sub-matrices such as blocks, columns, and rows. See Block operations for a detailed introduction. However, for performance reasons, writing to a sub-sparse-matrix is much more limited, and currently only contiguous sets of columns (resp. rows) of a column-major (resp. row-major) SparseMatrix are writable. Moreover, this information has to be known at compile-time, leaving out methods such as block(...)
and corner*(...)
.
But we're in luck as cbind()
in blocky enough. A really simple solution then is
// [[Rcpp::export]]
Eigen::SparseMatrix<double>
RcppMatrixCb2(Eigen::MappedSparseMatrix<double>& matrix1,
Eigen::MappedSparseMatrix<double>& matrix2) {
SparseMatrix<double> out(matrix1.rows(), matrix1.cols() + matrix2.cols());
out.leftCols(matrix1.cols()) = matrix1;
out.rightCols(matrix2.cols()) = matrix2;
return out;
}
which beats both previous attempts:
> benchmark(Matrix=cbind(x,x),
+ prevSol=RcppMatrixCbind(x,x),
+ newSol=RcppMatrixCb2(x,x),
+ order="relative")[,1:4]
test replications elapsed relative
3 newSol 100 0.585 1.000
1 Matrix 100 0.686 1.173
2 prevSol 100 4.603 7.868
>
My complete file is below. It lacks a test in both functions: we need to ensure matrices one and two have the same rows.
// cf https://stackoverflow.com/questions/45875668/rcpp-eigen-sparse-matrix-cbind
#include <RcppEigen.h>
// [[Rcpp::depends(RcppEigen)]]
using namespace Rcpp;
using namespace Eigen;
// [[Rcpp::export]]
Eigen::SparseMatrix<double> RcppMatrixCbind(Eigen::MappedSparseMatrix<double>& matrix1,
Eigen::MappedSparseMatrix<double>& matrix2) {
SparseMatrix<double> out(matrix1.rows(), matrix1.cols() + matrix2.cols());
std::vector<Triplet<double> > tripletList;
tripletList.reserve(matrix1.nonZeros() + matrix2.nonZeros());
for (int k = 0; k < matrix1.outerSize(); ++k) {
for (MappedSparseMatrix<double>::InnerIterator it(matrix1, k); it; ++it) {
tripletList.push_back(Triplet<double>(it.row(), it.col(), it.value()));
}
}
for (int k = 0; k < matrix2.outerSize(); ++k) {
for (MappedSparseMatrix<double>::InnerIterator it(matrix2, k); it; ++it) {
tripletList.push_back(Triplet<double>(it.row(), it.col() + matrix1.cols(), it.value()));
}
}
out.setFromTriplets(tripletList.begin(), tripletList.end());
return out;
}
// [[Rcpp::export]]
Eigen::SparseMatrix<double> RcppMatrixCb2(Eigen::MappedSparseMatrix<double>& matrix1,
Eigen::MappedSparseMatrix<double>& matrix2) {
SparseMatrix<double> out(matrix1.rows(), matrix1.cols() + matrix2.cols());
out.leftCols(matrix1.cols()) = matrix1;
out.rightCols(matrix2.cols()) = matrix2;
return out;
}
/*** R
require(Matrix)
set.seed(42)
x = rsparsematrix(10000, 500, .1)
library(rbenchmark)
benchmark(Matrix=cbind(x,x),
prevSol=RcppMatrixCbind(x,x),
newSol=RcppMatrixCb2(x,x),
order="relative")[,1:4]
*/