One of the way is by spliting based on \n\n
, then creating separate dataframes and then concatenating them. i.e
#Bit of code from https://stackoverflow.com/questions/45740537/copying-multiindex-dataframes-with-pd-read-clipboard
def read_clipboard_split(index_names_row=None, **kwargs):
encoding = kwargs.pop('encoding', 'utf-8')
# only utf-8 is valid for passed value because that's what clipboard
# supports
if encoding is not None and encoding.lower().replace('-', '') != 'utf8':
raise NotImplementedError(
'reading from clipboard only supports utf-8 encoding')
from pandas import compat, read_fwf
from pandas.io.clipboard import clipboard_get
from pandas.io.common import StringIO
data = clipboard_get()
items = data.split("\n\n")
k = []
for i in items:
k.append(read_fwf(StringIO(i), **kwargs))
df = pd.concat(k,axis=1)
return df
read_clipboard_split()
Sample run :
user \
0 b80344d063b5ccb3212f76538f3d9e43d87dca9e
1 b80344d063b5ccb3212f76538f3d9e43d87dca9e
2 b80344d063b5ccb3212f76538f3d9e43d87dca9e
3 b80344d063b5ccb3212f76538f3d9e43d87dca9e
4 b80344d063b5ccb3212f76538f3d9e43d87dca9e
rating
0 1
1 2
2 1
3 1
4 1
Output:
Unnamed: 0 user \ Unnamed: 0 rating
0 0 b80344d063b5ccb3212f76538f3d9e43d87dca9e 0 1
1 1 b80344d063b5ccb3212f76538f3d9e43d87dca9e 1 2
2 2 b80344d063b5ccb3212f76538f3d9e43d87dca9e 2 1
3 3 b80344d063b5ccb3212f76538f3d9e43d87dca9e 3 1
4 4 b80344d063b5ccb3212f76538f3d9e43d87dca9e 4 1