This is a similar question to that posted in Regression (logistic) in R: Finding x value (predictor) for a particular y value (outcome). I am trying to find the x value for a known y value (in this case 0.000001) obtained from fitting a log normal curve fitted to sapling densities at distances from parent trees using a genetic algorithm. This algorithm gives me the a and b parameters of the best-fit log normal curve.
I have obtained the value of x for y=0.00001 for other curves, such as negative exponential, by using uniroot using this code (which works well for these curves):
##calculate x value at y=0.000001 (predicted near-maximum recruitment distance)
aparam=a
bparam=b
testfn <- function (y, aparam, bparam) {
## find value of x that satisfies y = a + bx
fn <- function(x) (a * exp(-b * x)) - y
uniroot(fn, lower=0, upper= 100000000)$root
}
testfn(0.000001)
Unfortunately, the same code using a log normal formula does not work. I have tried to use uniroot by setting the lower boundary above zero. But get an error code:
Error in uniroot(fn, lower = 1e-16, upper = 1e+18) :
f() values at end points not of opposite sign
My code and data (given below the code) is:
file="TR maire 1mbin.txt"
xydata <- read.table(file,header=TRUE,col.names=c('x','y'))
####assign best parameter values
a = 1.35577
b = 0.8941521
#####Plot model against data
par(mar=c(5,5,2,2))
xvals=seq(1,max(xydata$x),1)
plot(jitter(xydata$x), jitter(xydata$y),pch=1,xlab="distance from NCA (m)",
ylab=quote(recruit ~ density ~ (individuals ~ m^{2~~~ -1})))
col2="light grey"
plotmodel <- a* exp(-(b) * xvals)
lines(xvals,plotmodel,col=col2)
####ATTEMPT 1
##calculate x value at y=0.000001 (predicted near-maximum recruitment distance)
aparam=a
bparam=b
testfn <- function (y, aparam, bparam) {
fn <- function(x) ((exp(-(((log(x/b)) * (log(x/b)))/(2*a*a))))/(a * x * sqrt(2*pi))) - y
uniroot(fn, lower=0.0000000000000001, upper= 1000000000000000000)$root
}
testfn(0.000001)
data is:
xydata
1 1 0.318309886
2 2 0.106103295
3 2 0.106103295
4 2 0.106103295
5 3 0.063661977
6 4 0.045472841
7 5 0.035367765
8 5 0.035367765
9 7 0.048970752
10 8 0.021220659
11 8 0.021220659
12 8 0.042441318
13 9 0.018724111
14 10 0.016753152
15 10 0.016753152
16 12 0.013839560
17 13 0.025464791
18 16 0.010268061
19 17 0.009645754
20 24 0.013545102
21 25 0.032480601
22 26 0.043689592
23 27 0.006005847
24 28 0.011574905
25 31 0.062618338
26 32 0.005052538
27 42 0.003835059
28 42 0.003835059
29 44 0.003658734
30 46 0.003497911
31 48 0.006701261
32 50 0.003215251
33 50 0.006430503
34 51 0.006303166
35 58 0.002767912
36 79 0.002027452
37 129 0.003715680
38 131 0.001219578
39 132 0.001210304
40 133 0.001201169
41 144 0.001109094
42 181 0.000881745
43 279 0.001142944
44 326 0.000488955
Or is there another way of approaching this? I'm an ecologist and sometimes R just does not make sense!