2

I have a dataframe:

df = pd.DataFrame({'unix_utc_ts': [1503007204222, 1503007210206, 1503007215121,
    1503007220475], 'tz': ['+0000', '+0100', 'CEST', 'EEST']})

And I want to convert unix timestamps into datetime with timezone, so I want something like this:

df['local_ts'] = pd.to_datetime(df['unix_utc_ts'], unit='ms', tz=df['tz'])

The above code doesn't work. Without the tz argument I get this:

      tz    unix_utc_ts                  utc_ts
0  +0000  1503007204222 2017-08-17 22:00:04.222
1  +0100  1503007210206 2017-08-17 22:00:10.206
2   CEST  1503007215121 2017-08-17 22:00:15.121
3   EEST  1503007220475 2017-08-17 22:00:20.475

But of course I want timezone to be included in datetime, so I want this dataframe:

      tz    unix_utc_ts                  utc_ts                local_ts
0  +0000  1503007204222 2017-08-17 22:00:04.222 2017-08-17 22:00:04.222
1  +0100  1503007210206 2017-08-17 22:00:10.206 2017-08-17 23:00:10.206
2   CEST  1503007215121 2017-08-17 22:00:15.121 2017-08-18 00:00:15.121
3   EEST  1503007220475 2017-08-17 22:00:20.475 2017-08-18 01:00:20.475

I've searched and read lots of stackoverflow questions but didn't find any working answer :(

Thank you!

ragesz
  • 9,009
  • 20
  • 71
  • 88

1 Answers1

4

Use apply and tz_localize to convert each row:

import pandas as pd
df = pd.DataFrame({'unix_utc_ts': [1503007204222, 1503007210206, 1503007215121,
1503007220475], 'tz': ['CEST', 'EEST', 'CEST', 'EEST']})

df['datetime_utc'] = pd.to_datetime(df['unix_utc_ts'], unit='ms')
df['datetime_local'] = df.apply(lambda x: x['datetime_utc'].tz_localize(x['tz']), axis=1)

However, you are going to have an issue with the format of your timezones. Pytz is used to map timezone strings, and the ones you have listed don't match (here is a listing I found of them). So you'll have to make a mapping from your timezone names to Pytz's.

thaavik
  • 3,257
  • 2
  • 18
  • 25