I perform following ezANOVA:
RMANOVAGHB1 <- ezANOVA(GHB1, dv=DIF.SCORE.STARTLE, wid=RAT.ID, within=TRIAL.TYPE, between=GROUP, detailed = TRUE, return_aov = TRUE)
My dataset looks like this:
RAT.ID DIF.SCORE.STARTLE GROUP TRIAL.TYPE
1 1 170.73 SAL TONO
2 1 80.07 SAL NOAL
3 2 456.40 PROP TONO
4 2 290.40 PROP NOAL
5 3 507.20 SAL TONO
6 3 261.60 SAL NOAL
7 4 208.67 PROP TONO
8 4 137.60 PROP NOAL
9 5 500.50 SAL TONO
10 5 445.73 SAL NOAL
up until rat.id 16.
My supervisors don't work with R, so they can't help me. I need code that will give me all post hoc contrasts, but looking it up only confuses me more and more. I already tried to do TukeyHSD on the aov output of ezANOVA and tried pairwise.t.test next (as I found out bonferroni is a more appropriate correction in this case), but none seem to work. I've also found things about using a linear model and then multcomp, but I don't know if that would be a good solution in this case. I feel like the problem with everything I tried is either that I have between and within variables or that my dataset is not set up right. Another complicating factor is that I'm just a beginner with R and my statistical knowledge is still pretty basic as this is one of my first practical experiences with doing analyses.
If it's important, this is the output of the anova:
$ANOVA
Effect DFn DFd SSn SSd F p p<.05 ges
1 (Intercept) 1 14 1233568.9 1076460.9 16.043280 0.001302172 * 0.508451750
2 GROUP 1 14 212967.9 1076460.9 2.769771 0.118272657 0.151521743
3 TRIAL.TYPE 1 14 137480.6 116097.9 16.578499 0.001143728 * 0.103365833
4 GROUP:TRIAL.TYPE 1 14 11007.2 116097.9 1.327335 0.268574391 0.009145489
$aov
Call:
aov(formula = formula(aov_formula), data = data)
Grand Mean: 196.3391
Stratum 1: RAT.ID
Terms:
GROUP Residuals
Sum of Squares 212967.9 1076460.9
Deg. of Freedom 1 14
Residual standard error: 277.2906
1 out of 2 effects not estimable
Estimated effects are balanced
Stratum 2: RAT.ID:TRIAL.TYPE
Terms:
TRIAL.TYPE GROUP:TRIAL.TYPE Residuals
Sum of Squares 137480.6 11007.2 116097.9
Deg. of Freedom 1 1 14
Residual standard error: 91.0643
Estimated effects may be unbalanced