2.0000000000000004
and 2.
are both represented as 10.
in single precision. In your case, using single precision for C# should give the exact answer
For your other example, Wolfram Alpha may use higher precision than machine precision for calculation. This adds a big performance penalty. For instance, in Mathematica, going to higher precision makes calculations about 300 times slower
k = 1000000;
vec1 = RandomReal[1, k];
vec2 = SetPrecision[vec1, 20];
AbsoluteTiming[vec1^2;]
AbsoluteTiming[vec2^2;]
It's 0.01 second vs 3 seconds on my machine
You can see the difference in results using single precision and double precision introduced by doing something like the following in Java
public class Bits {
public static void main(String[] args) {
double a1=2.0;
float a2=(float)2.0;
double b1=Math.pow(Math.sqrt(a1),2);
float b2=(float)Math.pow(Math.sqrt(a2),2);
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(a1)));
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(a2)));
System.out.println(Long.toBinaryString(Double.doubleToRawLongBits(b1)));
System.out.println(Integer.toBinaryString(Float.floatToRawIntBits(b2)));
}
}
You can see that single precision result is exact, whereas double precision is off by one bit