You can use some regular expressions when loading files in pyspark :
input_path = "PARTITION_YEAR=2017/PARTITION_MONTH=0{7/PARTITION_DAY={1[2-9],[2-3]*},8/PARTITION_DAY={0[1-9],10}}"
df = spark.read.parquet(input_path)
You can also generate a list of comma separated paths:
input_path = ",".join(["PARTITION_YEAR=2017/PARTITION_MONTH=07/PARTITION_DAY=" + str(x) for x in range(12, 32)]) \
+ ",".join(["PARTITION_YEAR=2017/PARTITION_MONTH=08/PARTITION_DAY=" + str(x) for x in range(1, 11)])
or using dates:
import datetime as dt
d1 = dt.date(2017,7,12)
d2 = dt.date(2017,8,10)
date_list = [d1 + dt.timedelta(days=x) for x in range(0, (d2 - d1).days + 1)]
input_path = ",".join(["PARTITION_YEAR=2017/PARTITION_MONTH=%02d/PARTITION_DAY=%02d" % (d.month, d.day) for d in date_list])