This question may seem a bit pedantic but i've been really trying to dive deeper into Amortized analysis and am a bit confused as to why insert for a hash table is O(1) amortized.(Note: Im not talking about table doubling, I understand that)
Using this definition, "Amortized analysis gives the average performance (over time) of each operation in the worst case." It seems like the worst case for N inserts into a hashtable would result in a collision for every operation. I believe universal hashing guarantees collision at a rate of 1/m when the load balance is kept low, but isn't it still theoretically possible to get a collision for every insert?
It seems like technically the average amortized analysis for hashtable's insert is O(1).
Edit: You can assume the hashtable uses basic chaining where the element is placed at the end of the corresponding linked list. The real meat of my question refers to amortized analysis on probabilistic algorithms.
Edit 2: I found this post on quicksort, "Also there’s a subtle but important difference between amortized running time and expected running time. Quicksort with random pivots takes O(n log n) expected running time, but its worst-case running time is in Θ(n^2). This means that there is a small possibility that quicksort will cost (n^2) dollars, but the probability that this will happen approaches zero as n grows large." I think this probably answers my question.