I have data like this :
end station name User Type
0 Carmine St & 6 Ave Subscriber
1 South End Ave & Liberty St Subscriber
2 Christopher St & Greenwich St Subscriber
3 Lafayette St & Jersey St Subscriber
4 W 52 St & 11 Ave Subscriber
5 E 53 St & Lexington Ave Subscriber
6 W 17 St & 8 Ave Subscriber
7 St Marks Pl & 2 Ave Subscriber
8 Washington St & Gansevoort St Customer
9 Barclay St & Church St Subscriber
10 Washington St & Gansevoort St Customer
11 E 37 St & Lexington Ave Subscriber
12 E 51 St & 1 Ave Subscriber
13 W 33 St & 7 Ave Subscriber
14 Pike St & Monroe St Subscriber
15 E 24 St & Park Ave S Subscriber
16 1 Ave & E 15 St Subscriber
17 Broadway & W 32 St Customer
18 E 39 St & 3 Ave Customer
19 W 59 St & 10 Ave Subscriber
20 Centre St & Chambers St Subscriber
21 9 Ave & W 45 St Customer
22 8 Ave & W 33 St Subscriber
23 Suffolk St & Stanton St Subscriber
24 W 47 St & 10 Ave Subscriber
25 W 33 St & 7 Ave Subscriber
26 8 Ave & W 33 St Subscriber
27 1 Ave & E 15 St Customer
28 8 Ave & W 33 St Subscriber
29 W 33 St & 7 Ave Subscriber
... ... ...
I want to find five(5) most popular stations for Customers in descending order of popularity
Here is my code:
import pandas as pd
rides = pd.read_csv(csv_file_path, low_memory=False, parse_dates=True)
five_popular_station_end_trip = rides['end station name'].value_counts().head()
I can find most popular stations from one column but I have no idea about how to find it based on another column.