Taken from Microsoft's Reference Source, one implementation is:
// Gets a hash code for this string. If strings A and B are such that A.Equals(B), then
// they will return the same hash code.
[System.Security.SecuritySafeCritical] // auto-generated
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.MayFail)]
public override int GetHashCode() {
#if FEATURE_RANDOMIZED_STRING_HASHING
if(HashHelpers.s_UseRandomizedStringHashing)
{
return InternalMarvin32HashString(this, this.Length, 0);
}
#endif // FEATURE_RANDOMIZED_STRING_HASHING
unsafe {
fixed (char *src = this) {
Contract.Assert(src[this.Length] == '\0', "src[this.Length] == '\\0'");
Contract.Assert( ((int)src)%4 == 0, "Managed string should start at 4 bytes boundary");
#if WIN32
int hash1 = (5381<<16) + 5381;
#else
int hash1 = 5381;
#endif
int hash2 = hash1;
#if WIN32
// 32 bit machines.
int* pint = (int *)src;
int len = this.Length;
while (len > 2)
{
hash1 = ((hash1 << 5) + hash1 + (hash1 >> 27)) ^ pint[0];
hash2 = ((hash2 << 5) + hash2 + (hash2 >> 27)) ^ pint[1];
pint += 2;
len -= 4;
}
if (len > 0)
{
hash1 = ((hash1 << 5) + hash1 + (hash1 >> 27)) ^ pint[0];
}
#else
int c;
char *s = src;
while ((c = s[0]) != 0) {
hash1 = ((hash1 << 5) + hash1) ^ c;
c = s[1];
if (c == 0)
break;
hash2 = ((hash2 << 5) + hash2) ^ c;
s += 2;
}
#endif
#if DEBUG
// We want to ensure we can change our hash function daily.
// This is perfectly fine as long as you don't persist the
// value from GetHashCode to disk or count on String A
// hashing before string B. Those are bugs in your code.
hash1 ^= ThisAssembly.DailyBuildNumber;
#endif
return hash1 + (hash2 * 1566083941);
}
}
}
This is not stable across .NET versions, and from comments scattered around the string.cs source code, it may not even be stable across AppDomains within the same process.
If you want a real, stable hash code, that can "safely" be persisted outside the AppDomain, look at the hash functions in System.Security.Cryptography
. MD5
is acceptable for low security jobs, the SHAx
flavors are even better.
True Hashes are one way only, it is not possible to truly reverse a hash, since it is a "lossy" process. If the developers you got your code from claim they can reverse a hash, they were either lying, mistaken, or didn't implement the correct hash.