You can use the method dropna
for this:
data.dropna(axis=0, subset=('sms', ))
See the documentation for more details on the parameters.
Of course there are multiple ways to do this, and there are some slight performance differences. Unless performance is critical, I would prefer the use of dropna()
as it is the most expressive.
import pandas as pd
import numpy as np
i = 10000000
# generate dataframe with a few columns
df = pd.DataFrame(dict(
a_number=np.random.randint(0,1e6,size=i),
with_nans=np.random.choice([np.nan, 'good', 'bad', 'ok'], size=i),
letter=np.random.choice(list('abcdefghijklmnop'), size=i))
)
# using notebook %%timeit
a = df.dropna(subset=['with_nans'])
#1.29 s ± 112 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# using notebook %%timeit
b = df[~df.with_nans.isnull()]
#890 ms ± 59.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# using notebook %%timeit
c = df.query('with_nans == with_nans')
#1.71 s ± 100 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)