I have a non-uniform rectangular grid along D dimensions, a matrix of logical values V on the grid, and a matrix of query data points X. The number of grid points differs across dimensions.
I run the interpolation multiple times for the same grid G and query X, but for different values V.
The goal is to precompute the indexes and weights for the interpolation and to reuse them, because they are always the same.
Here is an example in 2 dimensions, in which I have to compute indexes and values every time within the loop, but I want to compute them only once before the loop. I keep the data types from my application (mostly single and logical gpuArrays).
% Define grid
G{1} = single([0; 1; 3; 5; 10]);
G{2} = single([15; 17; 18; 20]);
% Steps and edges are reduntant but help make interpolation a bit faster
S{1} = G{1}(2:end)-G{1}(1:end-1);
S{2} = G{2}(2:end)-G{2}(1:end-1);
gpuInf = 1e10;
% It's my workaround for a bug in GPU version of discretize in Matlab R2017a.
% It throws an error if edges contain Inf, realmin, or realmax. Seems fixed in R2017b prerelease.
E{1} = [-gpuInf; G{1}(2:end-1); gpuInf];
E{2} = [-gpuInf; G{2}(2:end-1); gpuInf];
% Generate query points
n = 50; X = gpuArray(single([rand(n,1)*14-2, 14+rand(n,1)*7]));
[G1, G2] = ndgrid(G{1},G{2});
for i = 1 : 4
% Generate values on grid
foo = @(x1,x2) (sin(x1+rand) + cos(x2*rand))>0;
V = gpuArray(foo(G1,G2));
% Interpolate
V_interp = interpV(X, V, G, E, S);
% Plot results
subplot(2,2,i);
contourf(G1, G2, V); hold on;
scatter(X(:,1), X(:,2),50,[ones(n,1), 1-V_interp, 1-V_interp],'filled', 'MarkerEdgeColor','black'); hold off;
end
function y = interpV(X, V, G, E, S)
y = min(1, max(0, interpV_helper(X, 1, 1, 0, [], V, G, E, S) ));
end
function y = interpV_helper(X, dim, weight, curr_y, index, V, G, E, S)
if dim == ndims(V)+1
M = [1,cumprod(size(V),2)];
idx = 1 + (index-1)*M(1:end-1)';
y = curr_y + weight .* single(V(idx));
else
x = X(:,dim); grid = G{dim}; edges = E{dim}; steps = S{dim};
iL = single(discretize(x, edges));
weightL = weight .* (grid(iL+1) - x) ./ steps(iL);
weightH = weight .* (x - grid(iL)) ./ steps(iL);
y = interpV_helper(X, dim+1, weightL, curr_y, [index, iL ], V, G, E, S) +...
interpV_helper(X, dim+1, weightH, curr_y, [index, iL+1], V, G, E, S);
end
end