Discard columnwise contiguous NAs
Try this, which uses rle(is.na...)) to determine runs of NAs. If any are > num_runs then it is discarded (Data at bottom)
myfun <- function(x, num_runs) {
# x is vector column of df
require(dplyr)
runs <- cumsum(rle(is.na(x))$lengths)
vals <- rle(is.na(x))$values
start <- dplyr::lag(runs)+1
start <- replace(start, is.na(start), 1)
M <- rbind(start[vals], runs[vals])
seqruns <- apply(M, 2, function(x) if ((x[2]-x[1]+1) > num_runs) { seq(x[1],x[2]) })
ans <- unlist(seqruns)
return(ans)
}
library(purrr)
library(dplyr)
num_runs <- 4
discard <- unlist(map(1:ncol(df), ~myfun(df[,.x, num_runs])))
df[-discard,]
Output
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 NA 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 NA 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 NA 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 NA 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Discard rowwise contiguous NAs
Try this, which uses rle(is.na...))
to determine runs of NA
s. If any
are > num_runs
then it is discarded (Data at bottom)
library(purrr)
num_runs <- 1 # number of contiguous NAs
keep <- map_lgl(1:nrow(df), ~!any(rle(is.na(unlist(df[.x,])))$lengths[rle(is.na(unlist(df[.x,])))$values] > num_runs))
df[keep,]
Output
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 NA 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 NA 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 NA 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 NA 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 NA 4
Lincoln Continental 10.4 8 460.0 215 NA 5.424 17.82 0 0 NA 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 NA 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 NA 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 NA 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 NA 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 NA 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 NA 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
Data
library(dplyr)
df <- mtcars %>% replace(.==3, NA)