I am trying to classify an image by selecting a pixel at random, then finding all pixels in the image that are a certain euclidian distance in color space from that original pixel. My current script takes a prohibitively long time. I wonder if I am able to use this equation to generate a boolean matrix that will allow quicker manipulation of the image.
( x-cx ) ^2 + (y-cy) ^2 + (z-cz) ^ 2 < r^2
Here is the code I am using now:
import PIL, glob, numpy, random, math, time
def zone_map(picture, threshold):
im = PIL.Image.open(picture)
pix = im.load()
[width, height] = im.size
mask = numpy.zeros((width,height))
while 0 in mask:
x = random.randint(0, width)
y = random.randint(0, height)
if mask[x, y] == 0:
point = pix[x,y]
to_average = {(x, y): pix[x, y]}
start = time.clock()
for row in range(0, width):
for column in range(0, height):
if euclid_dist(point, pix[row,column]) <= threshold:
to_average[(row,column)] = pix[row, column]
#to_average = in_sphere(pix, point)
end = time.clock()
print(end - start)
to_average_sum = (0, 0, 0)
for value in to_average.values():
to_average_sum = tuple_sum(to_average_sum, value)
average = tuple_divide(to_average_sum, len(to_average.values()))
for coordinate in to_average.keys():
pix[coordinate] = average
mask[coordinate] = 1
unique, counts = numpy.unique(mask, return_counts=True)
progress = dict(zip(unique, counts))
print((progress[1] / progress[0])*100, '%')
im.save()
return im
def euclid_dist(tuple1, tuple2):
"""
Finds euclidian distance between two points in n dimensional sapce
"""
tot_sq = 0
for num1, num2 in zip(tuple1, tuple2):
tot_sq += (num1 + num2)**2
return math.sqrt(tot_sq)
def tuple_sum(tuple1, tuple2):
"""
Returns tuple comprised of sums of input tuples
"""
sums = []
for num1, num2 in zip(tuple1, tuple2):
sums.append(num1 + num2)
return tuple(sums)
def tuple_divide(tuple1, divisor):
"""
Divides numerical values of tuples by divisisor, yielding integer results
"""
quotients = []
for value in tuple1:
quotients.append(int(round(value/divisor)))
return tuple(quotients)
Any information on how to incorporate the described boolean matrix, or any other ideas on how to speed this up, would be greatly appreciated.