When you apply groupby
on a dataframe, you don't get rows, you get groups of dataframe. For example, consider:
df
ID Date Days Volume/Day
0 111 2016-01-01 20 50
1 111 2016-02-01 25 40
2 111 2016-03-01 31 35
3 111 2016-04-01 30 30
4 111 2016-05-01 31 25
5 112 2016-01-01 31 55
6 112 2016-01-02 26 45
7 112 2016-01-03 31 40
8 112 2016-01-04 30 35
9 112 2016-01-05 31 30
for i, g in df.groupby('ID'):
print(g, '\n')
ID Date Days Volume/Day
0 111 2016-01-01 20 50
1 111 2016-02-01 25 40
2 111 2016-03-01 31 35
3 111 2016-04-01 30 30
4 111 2016-05-01 31 25
ID Date Days Volume/Day
5 112 2016-01-01 31 55
6 112 2016-01-02 26 45
7 112 2016-01-03 31 40
8 112 2016-01-04 30 35
9 112 2016-01-05 31 30
For your case, you should probably look into dfGroupby.apply
, if you want to apply some function on your groups, dfGroupby.transform
to produce like indexed dataframe (see docs for explanation) or dfGroupby.agg
, if you want to produce aggregated results.
You'd do something like:
r = df.groupby('Date').apply(your_function)
You'd define your function as:
def your_function(df):
... # operation on df
return result
If you have problems with the implementation, please open a new question, post your data and your code, and any associated errors/tracebacks. Happy coding.