I'm trying to solve the 18th problem from Project Euler but I'm stuck in the solution. Doing it in a paper I get the same results but I know the answer has a difference of 10 between what I'm getting.
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3 7 4 2 4 6 8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
Here is my code
filename = "triangle.txt"
f = open(filename,"r+")
total = 0
#will store the position of the maximum value in the line
index = 0
#get the first pyramid value
total = [int(x) for x in f.readline().split()][0]
#since it's only one value, the position will start with 0
current_index = 0
# loop through the lines
for line in f:
# transform the line into a list of integers
cleaned_list = [int(x) for x in line.split()]
# get the maxium value between index and index + 1 (adjacent positions)
maximum_value_now = max(cleaned_list[current_index],cleaned_list[current_index + 1])
#print maximum_value_now
# stores the index to the next iteration
future_indexes = [ind for (ind,value) in enumerate(cleaned_list) if value == maximum_value_now]
# we have more that 2 values in our list with this maximum value
# must return only that which is greater than our previous index
if (len(future_indexes) > 1):
current_index = [i for i in future_indexes if (i >= current_index and i <= current_index + 1)][0]
else:
#only one occurence of the maximum value
current_index = future_indexes[0]
# add the value found to the total sum
total = total + maximum_value_now
print total
Thanks!