In your example above, if you wrote a function that takes a Fooable
parameter, e.g.
func doSomething(with fooable:Fooable) {
fooable.foo(bar: ???) // what type is allowed to be passed here? It's not _any_ Equatable, it's the associated type Bar, which here would be...???
}
What type could be passed into fooable.foo(bar:)
? It can't be any Equatable
, it must be the specific associated type Bar
.
Ultimately, it boils down the the problem that protocols that reference "Self" or have an associated type end up having different interfaces based on which concrete implementation has conformed (i.e. the specific type for Self, or the specific associated type). So these protocols can be considered as missing information about types and signatures needed to address them directly, but still serve as templates for conforming types and so can be used as generic constraints.
For example, the compiler would accept the function written like this:
func doSomething<T: Fooable>(with fooable:T, bar: T.Bar) {
fooable.foo(bar: bar)
}
In this scenario we aren't trying to address the Fooable
protocol as a protocol. Instead, we are accepting any concrete type, T
, that is itself constrained to conform to Fooable
. But the compiler will know the exact concrete type of T
each time you call the function, so it therefore will know the exact associated type Bar
, and will know exactly what type may be passed as a parameter to fooable.foo(bar:)
More Details
It may help to think of "generic protocols" — i.e. protocols that have an associated type, including possibly the type Self — as something a little different than normal protocols. Normal protocols define messaging requirements, as you say, and can be used to abstract away a specific implementation and address any conforming type as the protocol itself.
Generic protocols are better understood as part of the generics system in Swift rather than as normal protocols. You can't cast to a generic protocol like Equatable (no if let equatable = something as? Equatable
) because as part of the generic system, Equatable must be specialized and understood at compile time. More on this below.
What you do get from generic protocols that is the same as normal protocols is the concept of a contract that conforming types must adhere to. By saying associatedtype Bar: Equatable
you are getting a contract that the type Bar will provide a way for you to call `func ==(left:Bar, right: Bar) -> Bool'. It requires conforming types to provide a certain interface.
The difference between generic protocols and normal protocols is that you can cast to and message normal protocols as the protocol type (not a concrete type), but you must always address conformers to generic protocols by their concrete type (just like all generics). This means normal protocols are a runtime feature (for dynamic casting) as well as a compile time feature (for type checking). But generic protocols are only a compile time feature (no dynamic casting).
Why can't we say var a:Equatable
? Well, let's dig in a little. Equatable means that one instance of a specific type can be compared for equality with another instance of the same type. I.e. func ==(left:A, right:A) -> Bool
. If Equatable were a normal protocol, you would say something more like: func ==(left:Equatable, right:Equatable) -> Bool
. But if you think about that, it doesn't make sense. String is Equatable with other Strings, Int is Equatable with other Ints, but that doesn't in any way mean Strings are Equatable with Ints. If the Equatable protocol just required the implementation of func ==(left:Equatable, right:Equatable) -> Bool
for your type, how could you possibly write that function to compare your type to every other possible Equatable type now and in the future?
Since that's not possible, Equatable requires only that you implement == for two instances of Self
type. So if Foo: Equatable, then you must only define == for two instances of Foo.
Now let's look at the problem with var a:Equatable
. This seems to make sense at first, but in fact, it doesn't:
var a: Equatable = "A String"
var b: Equatable = 100
let equal = a == b
Since both a
and b
are Equatable, we could be able to compare them for equality, right? But in fact, a
's equality implementation is limited to comparing a String to a String and b
's equality implementation is limited to comparing an Int to an Int. So it's best to think of generic protocols more like other generics to realize that Equatable<String>
is not the same protocol as Equatable<Int>
even though they are both supposedly just "Equatable".
As for why you can have a dictionary of type [AnyHashable: Any]
, but not [Hashable: Any]
, this is becoming more clear. The Hashable protocol inherits from Equatable, so it is a "generic protocol". That means for any Hashable type, there must be a func ==(left: Self, right:Self) -> Bool
. Dictionaries use both the hashValue and equality comparisons to store and retrieve keys. But how can a dictionary compare a String key and an Int key for equality, even if they both conform to Hashable / Equatable? It can't. Therefore, you need to wrap your keys in a special "type eraser" called AnyHashable. How type erasers work is too detailed for the scope of this question, but suffice it to say that a type eraser like AnyHashable gets instantiated with some type T: Hashable, and then forward requests for a hashValue to its wrapped type, and implements ==(left:AnyHashable, right: AnyHashable) -> Bool
in a way that also uses the wrapped type's equality implementation. I think this gist should give a great illustration of how you can implement an "AnyEquatable" type eraser.
https://gist.github.com/JadenGeller/f0d05a4699ddd477a2c1
Moving onward, because AnyHashable is a single concrete type (not a generic type like the Hashable protocol is), you can use it to define a dictionary. Because every single instance of AnyHashable can wrap a different Hashable type (String, Int, whatever), and can also produce a hashValue and be checked for equality with any other AnyHashable instance, it's exactly what a dictionary needs for its keys.
So, in a sense, type erasers like AnyHashable are a sort of implementation trick that turns a generic protocol into something like a normal protocol. By erasing / throwing away the generic associated type information, but keeping the required methods, you can effectively abstract the specific conformance of Hashable into general type "AnyHashable" that can wrap anything Hashable, but be used in non-generic circumstances.
This may all come together if you review that gist for creating an implementation of "AnyEquatable": https://gist.github.com/JadenGeller/f0d05a4699ddd477a2c1 and then go back an see how you can now turn this impossible / non-compiling code from earlier:
var a: Equatable = "A String"
var b: Equatable = 100
let equal = a == b
Into this conceptually similar, but actually valid code:
var a: AnyEquatable = AnyEquatable("A String")
var b: AnyEquatable = AnyEquatable(100)
let equal = a == b