I have next code:
from sklearn.model_selection import train_test_split
from scipy.misc import imresize
def _chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
def _batch_generator(data, batch_size):
indexes = range(len(data))
index_chunks = _chunks(indexes, batch_size)
for i, indexes in enumerate(index_chunks):
print("\nLoaded batch {0}\n".format(i + 1))
batch_X = []
batch_y = []
for index in indexes:
record = data[index]
image = _read_train_image(record["id"], record["index"])
mask = _read_train_mask(record["id"], record["index"])
mask_resized = imresize(mask, (1276, 1916)) >= 123
mask_reshaped = mask_resized.reshape((1276, 1916, 1))
batch_X.append(image)
batch_y.append(mask_reshaped)
np_batch_X = np.array(batch_X)
np_batch_y = np.array(batch_y)
yield np_batch_X, np_batch_y
def train(data, model, batch_size, epochs):
train_data, test_data = train_test_split(data)
samples_per_epoch = len(train_data)
steps_per_epoch = samples_per_epoch // batch_size
print("Train on {0} records ({1} batches)".format(samples_per_epoch, steps_per_epoch))
train_generator = _batch_generator(train_data, batch_size)
model.fit_generator(train_generator,
steps_per_epoch=steps_per_epoch,
nb_epoch=epochs,
verbose=1)
train(train_indexes[:30], autoencoder,
batch_size=2,
epochs=1)
So seems like it must works next way:
- get 30 (just example) indexes from dataset
- spit it to 22 train records and 8 validate indexes (not used yet)
- split train indexes to batches of 2 index in generator (so - 11 batches) and it's works -
len(list(_batch_generator(train_indexes[:22], 2)))
really returns 11 - fit model:
- on batches generated by train_generator (in mine case - 11 batches, each - 2 images)
- with 11 batches in epoch (
steps_per_epoch=steps_per_epoch
) - and 1 epoch (
nb_epochs=epochs
,epochs=1
)
But output has next view:
Train on 22 records (11 batches)
Epoch 1/1
Loaded batch 1
C:\Users\user\venv\machinelearning\lib\site-packages\ipykernel_launcher.py:39: UserWarning: The semantics of the Keras 2 argument `steps_per_epoch` is not the same as the Keras 1 argument `samples_per_epoch`. `steps_per_epoch` is the number of batches to draw from the generator at each epoch. Basically steps_per_epoch = samples_per_epoch/batch_size. Similarly `nb_val_samples`->`validation_steps` and `val_samples`->`steps` arguments have changed. Update your method calls accordingly.
C:\Users\user\venv\machinelearning\lib\site-packages\ipykernel_launcher.py:39: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<generator..., steps_per_epoch=11, verbose=1, epochs=1)`
Loaded batch 2
1/11 [=>............................] - ETA: 11s - loss: 0.7471
Loaded batch 3
Loaded batch 4
Loaded batch 5
Loaded batch 6
2/11 [====>.........................] - ETA: 17s - loss: 0.7116
Loaded batch 7
Loaded batch 8
Loaded batch 9
Loaded batch 10
3/11 [=======>......................] - ETA: 18s - loss: 0.6931
Loaded batch 11
Exception in thread Thread-50:
Traceback (most recent call last):
File "C:\Anaconda3\Lib\threading.py", line 916, in _bootstrap_inner
self.run()
File "C:\Anaconda3\Lib\threading.py", line 864, in run
self._target(*self._args, **self._kwargs)
File "C:\Users\user\venv\machinelearning\lib\site-packages\keras\utils\data_utils.py", line 560, in data_generator_task
generator_output = next(self._generator)
StopIteration
4/11 [=========>....................] - ETA: 18s - loss: 0.6663
---------------------------------------------------------------------------
StopIteration Traceback (most recent call last)
<ipython-input-16-092ba6eb51d2> in <module>()
1 train(train_indexes[:30], autoencoder,
2 batch_size=2,
----> 3 epochs=1)
<ipython-input-15-f2fec4e53382> in train(data, model, batch_size, epochs)
37 steps_per_epoch=steps_per_epoch,
38 nb_epoch=epochs,
---> 39 verbose=1)
C:\Users\user\venv\machinelearning\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
85 warnings.warn('Update your `' + object_name +
86 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 87 return func(*args, **kwargs)
88 wrapper._original_function = func
89 return wrapper
C:\Users\user\venv\machinelearning\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, initial_epoch)
1807 batch_index = 0
1808 while steps_done < steps_per_epoch:
-> 1809 generator_output = next(output_generator)
1810
1811 if not hasattr(generator_output, '__len__'):
StopIteration:
So as I can see - all batches are readed successfylly (see "Loaded batch")
But StopIteration is raised by keras during processing batch 3 of epoch 1.