I have found Pandas groupby cumulative sum and found it very useful. However, I would like to determine how to calculate a reverse cumulative sum.
The link suggests the following.
df.groupby(by=['name','day']).sum().groupby(level=[0]).cumsum()
In order to reverse sum, I tried slicing the data, but it fails.
df.groupby(by=['name','day']).ix[::-1, 'no'].sum().groupby(level=[0]).cumsum()
Jack | Monday | 10 | 90
Jack | Tuesday | 30 | 80
Jack | Wednesday | 50 | 50
Jill | Monday | 40 | 80
Jill | Wednesday | 40 | 40
EDIT: Based on feedback, I tried to implement the code and make the dataframe larger:
import pandas as pd
df = pd.DataFrame(
{'name': ['Jack', 'Jack', 'Jack', 'Jill', 'Jill'],
'surname' : ['Jones','Jones','Jones','Smith','Smith'],
'car' : ['VW','Mazda','VW','Merc','Merc'],
'country' : ['UK','US','UK','EU','EU'],
'year' : [1980,1980,1980,1980,1980],
'day': ['Monday', 'Tuesday','Wednesday','Monday','Wednesday'],
'date': ['2016-02-31','2016-01-31','2016-01-31','2016-01-31','2016-01-31'],
'no': [10,30,50,40,40],
'qty' : [100,500,200,433,222]})
I then try and group on a number of columns but it fails to apply the grouping.
df = df.groupby(by=['name','surname','car','country','year','day','date']).sum().iloc[::-1].groupby(level=[0]).cumsum().iloc[::-1].reset_index()
Why is the case? I expect Jack Jones with car Mazda to be a separate cumulative quantity from Jack Jones with a VW.