Given a pandas DataFrame as below:
import pandas as pd
from sklearn.metrics import mean_squared_error
df = pd.DataFrame.from_dict(
{'row': ['a','b','c','d','e','y'],
'a': [ 0, -.8,-.6,-.3, .8, .01],
'b': [-.8, 0, .5, .7,-.9, .01],
'c': [-.6, .5, 0, .3, .1, .01],
'd': [-.3, .7, .3, 0, .2, .01],
'e': [ .8,-.9, .1, .2, 0, .01],
'y': [ .01, .01, .01, .01, .01, 0],
}).set_index('row')
df.columns.names = ['col']
I want to create a new column of RMSE values (from scikit-learn) using specific columns for the arguments. Namely, the columns y_true = df['a','b','c']
vs y_pred = df['x','y','x']
. This was easy to do using an iterative approach:
for tup in df.itertuples():
df.at[tup[0], 'rmse'] = mean_squared_error(tup[1:4], tup[4:7])**0.5
And that gives the desired result:
col a b c d e y rmse
row
a 0.00 -0.80 -0.60 -0.30 0.80 0.01 1.003677
b -0.80 0.00 0.50 0.70 -0.90 0.01 1.048825
c -0.60 0.50 0.00 0.30 0.10 0.01 0.568653
d -0.30 0.70 0.30 0.00 0.20 0.01 0.375988
e 0.80 -0.90 0.10 0.20 0.00 0.01 0.626658
y 0.01 0.01 0.01 0.01 0.01 0.00 0.005774
But I want a higher-performance solution, possibly using vectorization, since my dataframe has shape (180000000, 52). I also dislike indexing by tuple position rather than by column name. The attempt below:
df['rmse'] = df.apply(mean_squared_error(df[['a','b','c']], df[['d','e','y']])**0.5, axis=1)
Gets the error:
TypeError: ("'numpy.float64' object is not callable", 'occurred at index a')
So what am I doing wrong with my use of df.apply()
? Does this even maximize performance over iteration?
Testing Performance
I've tested the wall times for each of the first two respondants using the below test df:
# set up test df
dim_x, dim_y = 50, 1000000
cols = ["a_"+str(i) for i in range(1,(dim_x//2)+1)]
cols_b = ["b_"+str(i) for i in range(1,(dim_x//2)+1)]
cols.extend(cols_b)
shuffle(cols)
df = pd.DataFrame(np.random.uniform(0,10,[dim_y, dim_x]), columns=cols) #, index=idx, columns=cols
a = df.values
# define column samples
def column_index(df, query_cols):
cols = df.columns.values
sidx = np.argsort(cols)
return sidx[np.searchsorted(cols,query_cols,sorter=sidx)]
c0 = [s for s in cols if "a" in s]
c1 = [s for s in cols if "b" in s]
s0 = a[:,column_index(df, c0)]
s1 = a[:,column_index(df, c1)]
The results are as follows:
%%time
# approach 1 - divakar
rmse_out = np.sqrt(((s0 - s1)**2).mean(1))
df['rmse_out'] = rmse_out
Wall time: 393 ms
%%time
# approach 2 - divakar
diffs = s0 - s1
rmse_out = np.sqrt(np.einsum('ij,ij->i',diffs,diffs)/3.0)
df['rmse_out'] = rmse_out
Wall time: 228 ms
%%time
# approach 3 - divakar
diffs = s0 - s1
rmse_out = np.sqrt((np.einsum('ij,ij->i',s0,s0) + \
np.einsum('ij,ij->i',s1,s1) - \
2*np.einsum('ij,ij->i',s0,s1))/3.0)
df['rmse_out'] = rmse_out
Wall time: 421 ms
The solution using the apply function is still running after several minutes...