A couple of improvements you can make to your algorithm:
1) Use sets instead of a list for your solution. Using a set will insure that you don't have any duplicate and you don't have to do a if new_solution not in solutions:
check.
2) Add an edge case check for an all zero list. Not too much overhead but saves a HUGE amount of time for some cases.
3) Change enumerate to a second while. It is a little faster. Weirdly enough I am getting better performance in the test with a while loop then a n_max = n -2; for i in range(0, n_max):
Reading this question and answer for xrange or range should be faster.
NOTE: If I run the test 5 times I won't get the same time for any of them. All my test are +-100 ms. So take some of the small optimizations with a grain of salt. They might NOT really be faster for all python programs. They might only be faster for the exact hardware/software config the tests are running on.
ALSO: If you remove all the comments from the code it is a LOT faster HAHAHAH like 300ms faster. Just a funny side effect of however the tests are being run.
I have put in the O() notation into all of the parts of your code that take a lot of time.
def threeSum(nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
# timsort: O(nlogn)
nums.sort()
# Stored val: Really fast
n = len(nums)
# Memory alloc: Fast
solutions = []
# O(n) for enumerate
for i, num in enumerate(nums):
if i > n - 3:
break
left, right = i+1, n-1
# O(1/2k) where k is n-i? Not 100% sure about this one
while left < right:
s = num + nums[left] + nums[right] # check if current sum is 0
if s == 0:
new_solution = [num, nums[left], nums[right]]
# add to the solution set only if this triplet is unique
# O(n) for not in
if new_solution not in solutions:
solutions.append(new_solution)
right -= 1
left += 1
elif s > 0:
right -= 1
else:
left += 1
return solutions
Here is some code that won't time out and is fast(ish). It also hints at a way to make the algorithm WAY faster (Use sets more ;) )
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
# timsort: O(nlogn)
nums.sort()
# Stored val: Really fast
n = len(nums)
# Hash table
solutions = set()
# O(n): hash tables are really fast :)
unique_set = set(nums)
# covers a lot of edge cases with 2 memory lookups and 1 hash so it's worth the time
if len(unique_set) == 1 and 0 in unique_set and len(nums) > 2:
return [[0, 0, 0]]
# O(n) but a little faster than enumerate.
i = 0
while i < n - 2:
num = nums[i]
left = i + 1
right = n - 1
# O(1/2k) where k is n-i? Not 100% sure about this one
while left < right:
# I think its worth the memory alloc for the vars to not have to hit the list index twice. Not sure
# how much faster it really is. Might save two lookups per cycle.
left_num = nums[left]
right_num = nums[right]
s = num + left_num + right_num # check if current sum is 0
if s == 0:
# add to the solution set only if this triplet is unique
# Hash lookup
solutions.add(tuple([right_num, num, left_num]))
right -= 1
left += 1
elif s > 0:
right -= 1
else:
left += 1
i += 1
return list(solutions)