My adventures in machine learning started with caffe a month ago. I use the python interface and learn a lot with the included ipython notebook provided in the caffe/examples/
directory.
Having successfully run the notebook 01-learning-lenet.ipynb and having been able to load the caffe model (.caffemodel
file) I had created, I ventured into applying the same LeNet neural network to my own data for character recognition.
So I've used the convert_imageset tool, as detailed here to create my own lmdb files for train and test. My images are .png, 60x60 in size, 1 channel. I have followed the exact same approach as in the above mentioned notebook, adapting the appropriate parameters, paths and filenames. I can plot the accuracy and loss (accuracy >90%), and with a small additional script I've written I can output the labels of which images lead to a wrong prediction. So all seems to be in good shape.
But when I want to load my caffe model, it fails and my kernel dies.
Here are so far the reasons I've found that makes the caffemodel fail to load:
- wrong path and/or file names the model_def and model_weights (easy to identify from the error message, here the kernel don't die)
- deploy.prototxt isn't properly defined.
- It should follow the guidelines found on the BVLC caffe wiki, that is, removing any layer with data and labels from the
train.prototxt
, and adding a final layer of type "softmax". - improper setting of the dimensions of the first layer: size of the input image should match that declare in that first layer (
input_param { shape: { dim: 1 dim: 1 dim: 60 dim: 60 } }
)
- It should follow the guidelines found on the BVLC caffe wiki, that is, removing any layer with data and labels from the
- wrong size of caffemodel (such as few kB), the content can be checked using e.g. this script.
- lmdb files incorrect (wrong size, or not created); see the options for create_imageset here
- I've set the resize flag to false (it's a bit counterintuitive that resize size be set to 0 to indicate there's no resizing though)
- I've tried to add the --gray flag to force images to 1 channel and adapt the corresponding dimension in the deploy.prototxt
Besides these reasons, why a caffemodel could fail to load when using net = caffe.Net(model_def,model_weights,caffe.TEST)
with pycaffe (here used in a ipython notebook)?
Edit:
After having trained the model, having obtained some encouraging test results with a good accuracy, having obtained snapshots of .caffemodel
and .snapshot
files, the only message I have when executing the following 2 lines is the one shown below.
model_def = '/home/Prog/caffe/examples/svi/lenet_auto_deploy_2.prototxt'
model_weights = '/home/Prog/caffe/examples/svi/custom_iter_100.caffemodel'
net = caffe.Net(model_def,model_weights,caffe.TEST)
Edit 2:
More information is output in the terminal window from where I've launched the jupyter notebook.
Here it is, also after running net = caffe.Net(model_def,model_weights,caffe.TEST)
as here above.
W0927 21:01:04.047416 4685 _caffe.cpp:139] DEPRECATION WARNING - deprecated use of Python interface
W0927 21:01:04.047456 4685 _caffe.cpp:140] Use this instead (with the named "weights" parameter):
W0927 21:01:04.047472 4685 _caffe.cpp:142] Net('/home/Prog/caffe/examples/svi/lenet_auto_deploy_2.prototxt', 1, weights='/home/Prog/caffe/examples/svi/custom_iter_100.caffemodel')
I0927 21:01:04.047893 4685 net.cpp:51] Initializing net from parameters:
state {
phase: TEST
level: 0
}
layer {
name: "data"
type: "Input"
top: "data"
input_param {
shape {
dim: 1
dim: 1
dim: 60
dim: 60
}
}
}
[... to save space, only the first and last LeNet network's layers are shown ...]
layer {
name: "prob"
type: "SoftMax"
bottom: "score"
top: "prob"
}
I0927 21:01:04.048302 4685 layer_factory.hpp:77] Creating layer data
I0927 21:01:04.048334 4685 net.cpp:84] Creating Layer data
I0927 21:01:04.048352 4685 net.cpp:380] data -> data
I0927 21:01:04.048384 4685 net.cpp:122] Setting up data
I0927 21:01:04.048406 4685 net.cpp:129] Top shape: 1 1 60 60 (3600)
I0927 21:01:04.048418 4685 net.cpp:137] Memory required for data: 14400
I0927 21:01:04.048429 4685 layer_factory.hpp:77] Creating layer conv1
I0927 21:01:04.048451 4685 net.cpp:84] Creating Layer conv1
I0927 21:01:04.048465 4685 net.cpp:406] conv1 <- data
I0927 21:01:04.048480 4685 net.cpp:380] conv1 -> conv1
I0927 21:01:04.048539 4685 net.cpp:122] Setting up conv1
I0927 21:01:04.048558 4685 net.cpp:129] Top shape: 1 20 56 56 (62720)
I0927 21:01:04.048568 4685 net.cpp:137] Memory required for data: 265280
I0927 21:01:04.048591 4685 layer_factory.hpp:77] Creating layer pool1
I0927 21:01:04.048610 4685 net.cpp:84] Creating Layer pool1
I0927 21:01:04.048622 4685 net.cpp:406] pool1 <- conv1
I0927 21:01:04.048637 4685 net.cpp:380] pool1 -> pool1
I0927 21:01:04.048660 4685 net.cpp:122] Setting up pool1
I0927 21:01:04.048676 4685 net.cpp:129] Top shape: 1 20 28 28 (15680)
I0927 21:01:04.048686 4685 net.cpp:137] Memory required for data: 328000
I0927 21:01:04.048696 4685 layer_factory.hpp:77] Creating layer conv2
I0927 21:01:04.048713 4685 net.cpp:84] Creating Layer conv2
I0927 21:01:04.048724 4685 net.cpp:406] conv2 <- pool1
I0927 21:01:04.048738 4685 net.cpp:380] conv2 -> conv2
I0927 21:01:04.049101 4685 net.cpp:122] Setting up conv2
I0927 21:01:04.049123 4685 net.cpp:129] Top shape: 1 50 24 24 (28800)
I0927 21:01:04.049135 4685 net.cpp:137] Memory required for data: 443200
I0927 21:01:04.049156 4685 layer_factory.hpp:77] Creating layer pool2
I0927 21:01:04.049175 4685 net.cpp:84] Creating Layer pool2
I0927 21:01:04.049187 4685 net.cpp:406] pool2 <- conv2
I0927 21:01:04.049201 4685 net.cpp:380] pool2 -> pool2
I0927 21:01:04.049224 4685 net.cpp:122] Setting up pool2
I0927 21:01:04.049242 4685 net.cpp:129] Top shape: 1 50 12 12 (7200)
I0927 21:01:04.049253 4685 net.cpp:137] Memory required for data: 472000
I0927 21:01:04.049264 4685 layer_factory.hpp:77] Creating layer fc1
I0927 21:01:04.049280 4685 net.cpp:84] Creating Layer fc1
I0927 21:01:04.049293 4685 net.cpp:406] fc1 <- pool2
I0927 21:01:04.049309 4685 net.cpp:380] fc1 -> fc1
I0927 21:01:04.096449 4685 net.cpp:122] Setting up fc1
I0927 21:01:04.096500 4685 net.cpp:129] Top shape: 1 500 (500)
I0927 21:01:04.096515 4685 net.cpp:137] Memory required for data: 474000
I0927 21:01:04.096545 4685 layer_factory.hpp:77] Creating layer relu1
I0927 21:01:04.096570 4685 net.cpp:84] Creating Layer relu1
I0927 21:01:04.096585 4685 net.cpp:406] relu1 <- fc1
I0927 21:01:04.096602 4685 net.cpp:367] relu1 -> fc1 (in-place)
I0927 21:01:04.096624 4685 net.cpp:122] Setting up relu1
I0927 21:01:04.096640 4685 net.cpp:129] Top shape: 1 500 (500)
I0927 21:01:04.096652 4685 net.cpp:137] Memory required for data: 476000
I0927 21:01:04.096664 4685 layer_factory.hpp:77] Creating layer score
I0927 21:01:04.096683 4685 net.cpp:84] Creating Layer score
I0927 21:01:04.096694 4685 net.cpp:406] score <- fc1
I0927 21:01:04.096714 4685 net.cpp:380] score -> score
I0927 21:01:04.096935 4685 net.cpp:122] Setting up score
I0927 21:01:04.096953 4685 net.cpp:129] Top shape: 1 26 (26)
I0927 21:01:04.096967 4685 net.cpp:137] Memory required for data: 476104
I0927 21:01:04.096987 4685 layer_factory.hpp:77] Creating layer prob
F0927 21:01:04.097034 4685 layer_factory.hpp:81] Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type: SoftMax (known types: AbsVal, Accuracy, ArgMax, BNLL, BatchNorm, BatchReindex, Bias, Concat, ContrastiveLoss, Convolution, Crop, Data, Deconvolution, Dropout, DummyData, ELU, Eltwise, Embed, EuclideanLoss, Exp, Filter, Flatten, HDF5Data, HDF5Output, HingeLoss, Im2col, ImageData, InfogainLoss, InnerProduct, Input, LRN, LSTM, LSTMUnit, Log, MVN, MemoryData, MultinomialLogisticLoss, PReLU, Parameter, Pooling, Power, Python, RNN, ReLU, Reduction, Reshape, SPP, Scale, Sigmoid, SigmoidCrossEntropyLoss, Silence, Slice, Softmax, SoftmaxWithLoss, Split, TanH, Threshold, Tile, WindowData)
*** Check failure stack trace: ***
[I 21:01:04.851 NotebookApp] KernelRestarter: restarting kernel (1/5)
WARNING:root:kernel d4f64b91-60d4-4fed-bf20-6ccce2018c10 restarted