I ran my sample code using Keras.
model = Sequential([
BatchNormalization(axis=1, input_shape=(3,224,224))
Flatten(),
Dense(10, activation='softmax')])
model.compile(Adam(lr=1e-4), loss="categorical_crossentropy", metrics=['accuracy'])
model.fit_generator(batches, batches.nb_sample, nb_epoch=2,
validation_data=test_batches, nb_val_samples=test_batches.nb_sample)
It gave this output:
None
Epoch 1/2
500/500 [==============================] - 147s - loss: 2.2464 - acc: 0.3520 - val_loss: 6.4765 - val_acc: 0.1100
Epoch 2/2
500/500 [==============================] - 140s - loss: 0.8074 - acc: 0.7880 - val_loss: 3.8807 - val_acc: 0.1450
I'm not able to find the meaning of loss, acc, val_loss, val_acc
. Any explanation or link to the doc will be helpful.
This is closest to what I'm looking for. In above code, I'm fitting the model. But it is also giving a validation accuracy. From which data set is this validation accuracy is calculated?