I've tried a few things, any it seems that at best I'm 1.5x slower than the printf() family of functions, which boggles my mind a bit. I think what I'm up against in this situation is the addressing of my device is 32bit, and I don't have an FPU. I've tried a couple of "ftoa()" implementations and constrained them to only look for 2 digits on the left of the decimal point, and left myself some breadcrumbs as to what the total length is of a larger overall string that I'm trying to build. At the end of the day, it seems like the nature of an array of 8-bit elements on a 32bit system is leading to a bunch of hidden shift operations, bitwise "OR" and bitwise NAND operations that are just slowing things down ridiculously...
Anyone have any general tips for this situation? (other than a re-architect to an 8.24 fixed point design) I've tried the compiler optimizations from wysiwyg to execution speed focused, nothing seems to beat snprintf.
Here's the fastest one that I had tried:
#if (__DEBUG)
#define DATA_FIFO_SIZE (8)
#else
#define DATA_FIFO_SIZE (1024)
#endif
typedef struct
{
int32_t rval[4];
double cval[4];
uint16_t idx;
uint16_t padding; //@attention the compiler was padding with 2 bytes to align to 32bit
} data_fifo_entry;
const char V_ERR_MSG[7] = "ERROR,\0";
static data_fifo_entry data_fifo[DATA_FIFO_SIZE];
static char embed_text[256];
/****
* float to ASCII, adapted from
* https://stackoverflow.com/questions/2302969/how-to-implement-char-ftoafloat-num-without-sprintf-library-function-i#7097567
*
****/
//@attention the following floating point #defs are linked!!
#define MAX_DIGITS_TO_PRINT_FLOAT (6)
#define MAX_SUPPORTED_PRINTABLE_FLOAT (+999999.99999999999999999999999999)
#define MIN_SUPPORTED_PRINTABLE_FLOAT (-999999.99999999999999999999999999)
#define FLOAT_TEST6 (100000.0)
#define FLOAT_TEST5 (10000.0)
#define FLOAT_TEST4 (1000.0)
#define FLOAT_TEST3 (100.0)
#define FLOAT_TEST2 (10.0)
#define FLOAT_TEST1 (1.0)
static inline int ftoa(char *s, const float f_in, const uint8_t precision)
{
float f_p = 0.0001;
float n = f_in;
int neg = (n < 0.0);
int length = 0;
switch (precision)
{
case (1):
{
f_p = 0.1;
break;
}
case (2):
{
f_p = 0.01;
break;
}
case (3):
{
f_p = 0.001;
break;
}
//case (4) is the default assumption
case (5):
{
f_p = 0.00001;
break;
}
case (6):
{
f_p = 0.000001;
break;
}
default: //already assumed, no assignments here
{
break;
}
} /* switch */
// handle special cases
if (isnan(n))
{
strcpy(s, "nan\0");
length = 4;
}
else if ((isinf(n)) || (n >= MAX_SUPPORTED_PRINTABLE_FLOAT) ||
((-1.0 * n) < MIN_SUPPORTED_PRINTABLE_FLOAT))
{
strcpy(s, "inf\0");
length = 4;
}
else if (n == 0.0)
{
int idx;
s[length++] = '+';
s[length++] = '0';
s[length++] = '.';
for (idx = 0; idx < precision; idx++)
{
s[length++] = '0';
}
s[length++] = '\0';
}
else if (((n > 0.0) && (n < f_p)) || ((n < 0.0) && ((-1.0 * n) < f_p)))
{
int idx;
if (n >= 0.0)
{
s[length++] = '+';
}
else
{
s[length++] = '-';
}
s[length++] = '0';
s[length++] = '.';
for (idx = 1; idx < precision; idx++)
{
s[length++] = '0';
}
s[length++] = '\0';
}
else
{
int digit, m;
if (neg)
{
n = -n;
}
// calculate magnitude
if (n >= FLOAT_TEST6)
{
m = 6;
}
else if (n >= FLOAT_TEST5)
{
m = 5;
}
else if (n >= FLOAT_TEST4)
{
m = 4;
}
else if (n >= FLOAT_TEST3)
{
m = 3;
}
else if (n >= FLOAT_TEST2)
{
m = 2;
}
else if (n >= FLOAT_TEST1)
{
m = 1;
}
else
{
m = 0;
}
if (neg)
{
s[length++] = '-';
}
else
{
s[length++] = '+';
}
// set up for scientific notation
if (m < 1.0)
{
m = 0;
}
// convert the number
while (n > f_p || m >= 0)
{
double weight = pow(10.0, m);
if ((weight > 0) && !isinf(weight))
{
digit = floor(n / weight);
n -= (digit * weight);
s[length++] = '0' + digit;
}
if ((m == 0) && (n > 0))
{
s[length++] = '.';
}
m--;
}
s[length++] = '\0';
}
return (length - 1);
} /* ftoa */
static inline void print2_and_idx(int8_t idx1, int8_t idx2, uint16_t fifo_idx)
{
//@attention 10 characters already in the buffer, idx does NOT start at zero
uint8_t idx = V_PREFIX_LENGTH;
char scratch[16] = {'\0'};
char * p_fifo_id;
if ((idx1 >= 0) && (idx1 < MAX_IDX) && (idx2 >= 0) && (idx2 < MAX_IDX) &&
(fifo_idx >= 0) && (fifo_idx < DATA_FIFO_SIZE))
{
ftoa(scratch, data_fifo[fifo_idx].cval[idx1], 4);
memcpy((void *)&embed_text[idx += 7], (void *)scratch, 7);
embed_text[idx++] = ',';
ftoa(scratch, data_fifo[fifo_idx].cval[idx2], 4);
memcpy((void *)&embed_text[idx += 7], (void *)scratch, 7);
embed_text[idx++] = ',';
//!\todo maybe print the .idx as fixed width, zero pad to 5 digits
p_fifo_id = utoa((char *)&embed_text[idx], (unsigned int)data_fifo[fifo_idx].idx, 10);
idx += strlen(p_fifo_id);
embed_text[idx++] = ',';
}
else
{
memcpy((void *)&embed_text[idx], (void *)V_ERR_MSG, 7);
}
} /* print2_and_idx */