This is closely related to a the question: How to map the indexes of a matrix to a 1-dimensional array (C++)?
I need to assign a reversible index to each non-zero element in a banded matrix.
In the normal, full matrix it is easy to do:
|-------- 5 ---------|
Row ______________________ _ _
0 |0 1 2 3 4 | |
1 |5 6 7 8 9 | 4
2 |10 11 12 13 14| |
3 |15 16 17 18 19| _|_
|______________________|
Column 0 1 2 3 4
To find the array index we just use the following bijective formula:
matrix[ i ][ j ] = array[ i*m + j ]
In my case, we have a symmetrically banded matrix with some constraint on distance from the diagonal. For example, the following uses an upper and lower bound of 1:
|-------- 5 ---------|
Row ______________________ _ _
0 |0 1 X X X | |
1 |2 3 4 X X | 4
2 |X 5 6 7 X | |
3 |X X 8 9 10| _|_
|______________________|
Column 0 1 2 3 4
In this case, I want to assign an index position to each element within the bandwidth, and ignore everything outside. There are a couple of ways to do this, one of which is to create a list of all the acceptable indices ix's
, and then use map lookups to quickly go back and forth between a (row,col)
pair and a singular index:
ix's :: [(Int,Int)] -- List of all valid indices
lkup :: Map (Int,Int) Int
lkup = M.fromList $ zip ix's [0..]
rlkup :: Map Int (Int, Int)
rlkup = M.fromList $ zip [0..] ix's
fromTup :: (Int, Int) -> Int
fromTup tup = fromMaybe 0 $ M.lookup tup lkup
toTup :: Int -> (Int, Int)
toTup i = fromMaybe (0,0) $ M.lookup i rlkup
For large matrices, this leads to a huge number of map lookups, which causes a bottleneck. Is there a more efficient formula to translate between the valid addresses, k
, and (row,col)
pairs?