I'm using Tensorflow's 1.3 Estimator API to perform some image classification. Since I have a considerable amount of data, I gave the TFRecords a go. Saved the file and can read the examples to a Dataset using a parser function inside the input_fn of the estimator model. So far so good.
The issue is when I want to do some image augmentation (rotating and shearing in this case).
1) I tried using the tf.contrib.keras.preprocessing.image.random_shear
and the likes. Turns out Keras doesn't like the format of TF's shape ('Dimension') and I can't cast it to a list because its arguments are the axis indexes not the actual value.
2) Then I tried using the tf.contrib.image.rotate
and tf.contrib.image.transform
with random values in my chosen range. This time I get an error of NotFoundError: Op type not registered 'ImageProjectiveTransform' in binary running on MYPC. Make sure the Op and Kernel are registered in the binary running in this process.
which is an open issue (https://github.com/tensorflow/tensorflow/issues/9672). At the moment I can't move from Windows, so I would very interested in possible alternatives.
3) Searched for a way to read TFRecords and transform it to numpy array and do the augmentation with other tools, but can't find a way from within the input_fn from where I can't access the session.
Thanks!