There's a recipe for a decorator that uses as an example exactly what you want. It's named Memoize in the PythonDecoratorLibrary.
It may seem like overkill, but having the memoized
decorator around could be useful for other future tasks. That said, here it is in its entirety (although I changed the print
at the end):
import collections
import functools
class memoized(object):
'''Decorator. Caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned
(not reevaluated).
'''
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args):
if not isinstance(args, collections.Hashable):
# uncacheable. a list, for instance.
# better to not cache than blow up.
return self.func(*args)
if args in self.cache:
return self.cache[args]
else:
value = self.func(*args)
self.cache[args] = value
return value
def __repr__(self):
'''Return the function's docstring.'''
return self.func.__doc__
def __get__(self, obj, objtype):
'''Support instance methods.'''
return functools.partial(self.__call__, obj)
@memoized
def fibonacci(n):
"Return the nth fibonacci number."
if n in (0, 1):
return n
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci(12))