There's no "one-size-fits-all" explanation as to where an O(log k) term might come up.
You sometimes see this runtime arise in searching and sorting algorithms where you only need to rearrange some small part of the sequence. For example, the C++ standard library's std::partial_sort
function, which rearranges the sequence so that the first k elements are in sorted order and the remainder are in arbitrary order in time O(n log k). One way this could be implemented is to maintain a min-heap of size at most k and do n insertions/deletions on it, which is n operations that each take time O(log k). Similarly, there's an O(n log k)-time algorithm for finding the k largest elements in a data stream, which works by maintaining a max-heap of at most k elements.
(Neither of these approaches are optimal, though - you can do a partial sort in time O(n + k log k) using a linear-time selection algorithm and can similarly find the top k elements of a data stream in O(n).)m
You also sometimes see this runtime in algorithms that involve a divide-and-conquer strategy where the size of the problem in question depends on some parameter of the input size. For example, the Kirkpatrick-Seidel algorithm for computing a convex hull does linear work per level in a recurrence, and the number of layers is O(log k), where k is the number of elements in the resulting convex hull. The total work is then O(n log k), making it an output-sensitive algorithm.
In some cases, an O(log k) term can arise because you are processing a collection of elements one digit at a time. For example, radix sort has a runtime of O(n log k) when used to sort n values that range from 0 to k, inclusive, with the log k term arising from the fact that there are O(log k) digits in the number k.
In graph algorithms, where the number of edges (m) is related to but can be independent of the number of nodes (n), you often see runtimes like O(m log n), as is the case if you implement Dijkstra's algorithm with a binary heap.