I was also figuring this out in Python, so here is a port of Ramesh's solution to Python:
df = spark.createDataFrame([(['Pear','Orange','Apple'], ['Chicken','Pork','Beef'])],
("Fruits", "Meat"))
df.show(1,False)
from pyspark.sql.functions import udf
mergeCols = udf(lambda fruits, meat: fruits + meat)
df.withColumn("Food", mergeCols(col("Fruits"), col("Meat"))).show(1,False)
Output:
+---------------------+---------------------+
|Fruits |Meat |
+---------------------+---------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|
+---------------------+---------------------+
+---------------------+---------------------+------------------------------------------+
|Fruits |Meat |Food |
+---------------------+---------------------+------------------------------------------+
|[Pear, Orange, Apple]|[Chicken, Pork, Beef]|[Pear, Orange, Apple, Chicken, Pork, Beef]|
+---------------------+---------------------+------------------------------------------+
Kudos to Ramesh!
EDIT: Note that you might have to manually specify the column type (not sure why it worked for me only in some cases without explicit type specification - in other cases I was getting a string type column).
from pyspark.sql.types import *
mergeCols = udf(lambda fruits, meat: fruits + meat, ArrayType(StringType()))