0

I am trying to understand K-means clustering on a input .csv file which consists of 56376 rows and two columns with first column representing id and second column a group of words/Example of this data is given as

**1. 1428951621 do rememb came milan 19 april 2013 maynardmonday 16

  1. 1429163429 rt windeerlust sehun hyungluhan yessehun do even rememb
    day today**

The Scala code for processing this data looks like this

val inputData = sc.textFile("test.csv")


    // this is a changable parameter for the number of clusters to use for kmeans
   val numClusters = 4;
   // number of iterations for the kmeans
   val numIterations = 10;
   // this is the size of the vectors to be created by Word2Vec this is tunable
   val vectorSize = 600; 
val filtereddata = inputData.filter(!_.isEmpty).
                                map(line=>line.split(",",-1)).
                                map(line=>(line(1),line(1).split(" ").filter(_.nonEmpty)))



val corpus = inputData.filter(!_.isEmpty).
                          map(line=>line.split(",",-1)).
                          map(line=>line(1).split(" ").toSeq)
   val values:RDD[Seq[String]] = filtereddata.map(s=>s._2)
   val keys = filtereddata.map(s=>s._1)
/*******************Word2Vec and normalisation*****************************/
   val w2vec = new Word2Vec().setVectorSize(vectorSize);
   val model = w2vec.fit(corpus)
   val outtest:RDD[Seq[Vector]]= values.map(x=>x.map(m=>try {
             model.transform(m)
           } catch {
           case e: Exception => Vectors.zeros(vectorSize)
           }))
   val convertest = outtest.map(m=>m.map(x=>(x.toArray)))

   val withkey = keys.zip(convertest)
   val filterkey = withkey.filter(!_._2.isEmpty)

  val keysfinal= filterkey.map(x=>x._1)
  val valfinal= filterkey.map(x=>x._2)
  // for each collections of vectors that is one tweet, add the vectors
  val reducetest = valfinal.map(x=>x.reduce((a,b)=>a.zip(b).map(t=>t._1+t._2)))
  val filtertest = reducetest.map(x=>x.map(m=>(m,x.length)).map(m=>m._1/m._2))
  val test = filtertest.map(x=>new DenseVector(x).asInstanceOf[Vector])
   val normalizer =  new Normalizer()
   val data1= test.map(x=>(normalizer.transform(x)))
/*********************Clustering Algorithm***********************************/
   val clusters = KMeans.train(data1,numClusters,numIterations)
   val predictions= clusters.predict(data1)
   val clustercount=  keysfinal.zip(predictions).distinct.map(s=>(s._2,1)).reduceByKey(_+_)
   val result= keysfinal.zip(predictions).distinct
   result.saveAsTextFile(fileToSaveResults)
   val wsse = clusters.computeCost(data1)
   println(s"The number of clusters is $numClusters")
   println("The cluster counts are:")
   println(clustercount.collect().mkString(" "))
   println(s"The wsse is: $wsse")

However After some iterations it throws a "java.lang.NullPointerException" and exits at stage 36.The error looks like this:

17/10/07 14:42:10 INFO TaskSchedulerImpl: Adding task set 26.0 with 2 tasks
17/10/07 14:42:10 INFO TaskSetManager: Starting task 0.0 in stage 26.0 (TID 50, localhost, partition 0, ANY, 5149 bytes)
17/10/07 14:42:10 INFO TaskSetManager: Starting task 1.0 in stage 26.0 (TID 51, localhost, partition 1, ANY, 5149 bytes)
17/10/07 14:42:10 INFO Executor: Running task 1.0 in stage 26.0 (TID 51)
17/10/07 14:42:10 INFO Executor: Running task 0.0 in stage 26.0 (TID 50)
17/10/07 14:42:10 INFO deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
17/10/07 14:42:10 INFO deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
17/10/07 14:42:10 INFO deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
17/10/07 14:42:10 INFO deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
17/10/07 14:42:10 INFO ShuffleBlockFetcherIterator: Getting 2 non-empty blocks out of 2 blocks
17/10/07 14:42:10 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 1 ms
17/10/07 14:42:10 INFO ShuffleBlockFetcherIterator: Getting 2 non-empty blocks out of 2 blocks
17/10/07 14:42:10 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 1 ms
17/10/07 14:42:10 ERROR Executor: Exception in task 0.0 in stage 26.0 (TID 50)
java.lang.NullPointerException
    at java.lang.ProcessBuilder.start(ProcessBuilder.java:1012)
    at org.apache.hadoop.util.Shell.runCommand(Shell.java:404)

Kindly help me in localizing the issue in this code as I am not able to understand. Note:This code written by other people

Ram
  • 189
  • 1
  • 4
  • 19

1 Answers1

0

I think this has nothing to do with your code. This exception is thrown if one of the arguments passed to the ProcessBuilder is null. So I guess this must be a configuration issue or a bug in Hadoop.

From the quick googling for "hadoop java.lang.ProcessBuilder.start nullpointerexception" it seems this is a known problem:

https://www.fachschaft.informatik.tu-darmstadt.de/forum/viewtopic.php?t=34250

Is it possible to run Hadoop jobs (like the WordCount sample) in the local mode on Windows without Cygwin?

Community
  • 1
  • 1
lexicore
  • 42,748
  • 17
  • 132
  • 221