My model is like
print('Build main model...')
model = Sequential()
model.add(Merge([left, right], mode='sum'))
model.add(Dense(14, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
when I use model.evaluate([xtest1, xtest2], y_test)
, I get an accuracy of 90% but when I use model.predict_classes([x_test1, x_xtest2])
, I get totally wrong class labels, going by which my accuracy drops significantly. What is the difference in model.evaluate
and model.predict_classes
schema? Where am I making the mistake?